Reduced Microvascular Density in Omental Biopsies of Children with Chronic Kidney Disease

. 2016 ; 11 (11) : e0166050. [epub] 20161115

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27846250

BACKGROUND: Endothelial dysfunction is an early manifestation of cardiovascular disease (CVD) and consistently observed in patients with chronic kidney disease (CKD). We hypothesized that CKD is associated with systemic damage to the microcirculation, preceding macrovascular pathology. To assess the degree of "uremic microangiopathy", we have measured microvascular density in biopsies of the omentum of children with CKD. PATIENTS AND METHODS: Omental tissue was collected from 32 healthy children (0-18 years) undergoing elective abdominal surgery and from 23 age-matched cases with stage 5 CKD at the time of catheter insertion for initiation of peritoneal dialysis. Biopsies were analyzed by independent observers using either a manual or an automated imaging system for the assessment of microvascular density. Quantitative immunohistochemistry was performed for markers of autophagy and apoptosis, and for the abundance of the angiogenesis-regulating proteins VEGF-A, VEGF-R2, Angpt1 and Angpt2. RESULTS: Microvascular density was significantly reduced in uremic children compared to healthy controls, both by manual imaging with a digital microscope (median surface area 0.61% vs. 0.95%, p<0.0021 and by automated quantification (total microvascular surface area 0.89% vs. 1.17% p = 0.01). Density measured by manual imaging was significantly associated with age, height, weight and body surface area in CKD patients and healthy controls. In multivariate analysis, age and serum creatinine level were the only independent, significant predictors of microvascular density (r2 = 0.73). There was no immunohistochemical evidence for apoptosis or autophagy. Quantitative staining showed similar expression levels of the angiogenesis regulators VEGF-A, VEGF-receptor 2 and Angpt1 (p = 0.11), but Angpt2 was significantly lower in CKD children (p = 0.01). CONCLUSIONS: Microvascular density is profoundly reduced in omental biopsies of children with stage 5 CKD and associated with diminished Angpt2 signaling. Microvascular rarefaction could be an early systemic manifestation of CKD-induced cardiovascular disease.

Zobrazit více v PubMed

Sarnak MJ, Levey AS, Schoolwerth AC, Coresh J, Culleton B, Hamm LL, et al. Kidney disease as a risk factor for development of cardiovascular disease: a statement from the American Heart Association Councils on Kidney in Cardiovascular Disease, High Blood Pressure Research, Clinical Cardiology, and Epidemiology and Prevention. Circulation. 2003;108(17):2154–69. 10.1161/01.CIR.0000095676.90936.80 . PubMed DOI

Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med. 2004;351(13):1296–305. 10.1056/NEJMoa041031 . PubMed DOI

Fliser D, Wiecek A, Suleymanlar G, Ortiz A, Massy Z, Lindholm B, et al. The dysfunctional endothelium in CKD and in cardiovascular disease: mapping the origin(s) of cardiovascular problems in CKD and of kidney disease in cardiovascular conditions for a research agenda. Kidney Int Suppl (2011). 2011;1(1):6–9. 10.1038/kisup.2011.6 PubMed DOI PMC

Bonetti PO, Lerman LO, Lerman A. Endothelial dysfunction: a marker of atherosclerotic risk. Arterioscler Thromb Vasc Biol. 2003;23(2):168–75. . PubMed

Anderson TJ, Uehata A, Gerhard MD, Meredith IT, Knab S, Delagrange D, et al. Close relation of endothelial function in the human coronary and peripheral circulations. J Am Coll Cardiol. 1995;26(5):1235–41. . PubMed

Amann K, Neimeier KA, Schwarz U, Tornig J, Matthias S, Orth SR, et al. Rats with moderate renal failure show capillary deficit in heart but not skeletal muscle. Am J Kidney Dis. 1997;30(3):382–8. Epub 1997/09/18. S0272638697001753 [pii]. . PubMed

Tornig J, Amann K, Ritz E, Nichols C, Zeier M, Mall G. Arteriolar wall thickening, capillary rarefaction and interstitial fibrosis in the heart of rats with renal failure:the effects of ramipril, nifedipine and moxonidine. J Am Soc Nephrol. 1996;7(5):667–75. . PubMed

Flisinski M, Brymora A, Elminowska-Wenda G, Bogucka J, Walasik K, Stefanska A, et al. Influence of different stages of experimental chronic kidney disease on rats locomotor and postural skeletal muscles microcirculation. Ren Fail. 2008;30(4):443–51. 10.1080/08860220801985694 . PubMed DOI

Thang OH, Serne EH, Grooteman MP, Smulders YM, ter Wee PM, Tangelder GJ, et al. Capillary rarefaction in advanced chronic kidney disease is associated with high phosphorus and bicarbonate levels. Nephrol Dial Transplant. 2011;26(11):3529–36. 10.1093/ndt/gfr089 . PubMed DOI

Edwards-Richards A, DeFreitas M, Katsoufis CP, Seeherunvong W, Sasaki N, Freundlich M, et al. Capillary rarefaction: an early marker of microvascular disease in young hemodialysis patients. Clin Kidney J. 2014;7(6):569–74. 10.1093/ckj/sfu106 PubMed DOI PMC

Amann K, Breitbach M, Ritz E, Mall G. Myocyte/capillary mismatch in the heart of uremic patients. J Am Soc Nephrol. 1998;9(6):1018–22. . PubMed

Mayer G. Capillary rarefaction, hypoxia, VEGF and angiogenesis in chronic renal disease. Nephrol Dial Transplant. 2011;26(4):1132–7. 10.1093/ndt/gfq832 PubMed DOI PMC

Adair A, Mitchell DR, Kipari T, Qi F, Bellamy CO, Robertson F, et al. Peritubular capillary rarefaction and lymphangiogenesis in chronic allograft failure. Transplantation. 2007;83(12):1542–50. 10.1097/01.tp.0000266689.93615.cd . PubMed DOI

Deva R, Alias MA, Colville D, Tow FK, Ooi QL, Chew S, et al. Vision-threatening retinal abnormalities in chronic kidney disease stages 3 to 5. Clin J Am Soc Nephrol. 2011;6(8):1866–71. 10.2215/CJN.10321110 PubMed DOI PMC

Ooi QL, Tow FK, Deva R, Alias MA, Kawasaki R, Wong TY, et al. The microvasculature in chronic kidney disease. Clin J Am Soc Nephrol. 2011;6(8):1872–8. 10.2215/CJN.10291110 PubMed DOI PMC

Baumann M, Schwarz S, Kotliar K, von Eynatten M, Trucksaess AS, Burkhardt K, et al. Non-diabetic chronic kidney disease influences retinal microvasculature. Kidney Blood Press Res. 2009;32(6):428–33. 10.1159/000264650 . PubMed DOI

Sabanayagam C, Shankar A, Koh D, Chia KS, Saw SM, Lim SC, et al. Retinal microvascular caliber and chronic kidney disease in an Asian population. Am J Epidemiol. 2009;169(5):625–32. 10.1093/aje/kwn367 . PubMed DOI

Collins D, Hogan AM, O'Shea D, Winter DC. The omentum: anatomical, metabolic, and surgical aspects. Journal of gastrointestinal surgery: official journal of the Society for Surgery of the Alimentary Tract. 2009;13(6):1138–46. Epub 2009/03/18. 10.1007/s11605-009-0855-1 . PubMed DOI

Singh AK, Patel J, Litbarg NO, Gudehithlu KP, Sethupathi P, Arruda JA, et al. Stromal cells cultured from omentum express pluripotent markers, produce high amounts of VEGF, and engraft to injured sites. Cell and tissue research. 2008;332(1):81–8. Epub 2008/01/16. 10.1007/s00441-007-0560-x . PubMed DOI

Schaefer B, Bartosova M, Macher-Goeppinger S, Ujszaszi A, Wallwiener M, Nyarangi-Dix J, et al. Quantitative Histomorphometry of the Healthy Peritoneum. Sci Rep. 2016;6:21344 10.1038/srep21344 . PubMed DOI PMC

Schwartz GJ, Munoz A, Schneider MF, Mak RH, Kaskel F, Warady BA, et al. New equations to estimate GFR in children with CKD. J Am Soc Nephrol. 2009;20(3):629–37. 10.1681/ASN.2008030287 PubMed DOI PMC

Rizzardi AE, Johnson AT, Vogel RI, Pambuccian SE, Henriksen J, Skubitz AP, et al. Quantitative comparison of immunohistochemical staining measured by digital image analysis versus pathologist visual scoring. Diagnostic pathology. 2012;7:42 Epub 2012/04/21. 10.1186/1746-1596-7-42 ; PubMed Central PMCID: PMCPmc3379953. PubMed DOI PMC

Pries AR, Secomb TW, Gaehtgens P. The endothelial surface layer. Pflugers Archiv: European journal of physiology. 2000;440(5):653–66. Epub 2000/09/28. 10.1007/s004240000307 . PubMed DOI

Lockhart CJ, Hamilton PK, Quinn CE, McVeigh GE. End-organ dysfunction and cardiovascular outcomes: the role of the microcirculation. Clin Sci (Lond). 2009;116(3):175–90. 10.1042/CS20080069 . PubMed DOI

Feihl F, Liaudet L, Waeber B. The macrocirculation and microcirculation of hypertension. Current hypertension reports. 2009;11(3):182–9. Epub 2009/05/16. . PubMed

Amann K, Wiest G, Zimmer G, Gretz N, Ritz E, Mall G. Reduced capillary density in the myocardium of uremic rats—a stereological study. Kidney Int. 1992;42(5):1079–85. . PubMed

Drueke TB, Massy ZA. Atherosclerosis in CKD: differences from the general population. Nature reviews Nephrology. 2010;6(12):723–35. Epub 2010/10/28. 10.1038/nrneph.2010.143 . PubMed DOI

Vanholder R, Baurmeister U, Brunet P, Cohen G, Glorieux G, Jankowski J. A bench to bedside view of uremic toxins. J Am Soc Nephrol. 2008;19(5):863–70. Epub 2008/02/22. 10.1681/asn.2007121377 . PubMed DOI

Shroff RC, McNair R, Figg N, Skepper JN, Schurgers L, Gupta A, et al. Dialysis accelerates medial vascular calcification in part by triggering smooth muscle cell apoptosis. Circulation. 2008;118(17):1748–57. 10.1161/CIRCULATIONAHA.108.783738 . PubMed DOI

Carroll JF, Chiapa AL, Rodriquez M, Phelps DR, Cardarelli KM, Vishwanatha JK, et al. Visceral fat, waist circumference, and BMI: impact of race/ethnicity. Obesity (Silver Spring, Md). 2008;16(3):600–7. Epub 2008/02/02. 10.1038/oby.2007.92 . PubMed DOI

Brambilla P, Bedogni G, Moreno LA, Goran MI, Gutin B, Fox KR, et al. Crossvalidation of anthropometry against magnetic resonance imaging for the assessment of visceral and subcutaneous adipose tissue in children. International journal of obesity (2005). 2006;30(1):23–30. Epub 2005/12/14. 10.1038/sj.ijo.0803163 . PubMed DOI

Pries AR, Secomb TW. Making microvascular networks work: angiogenesis, remodeling, and pruning. Physiology (Bethesda, Md). 2014;29(6):446–55. Epub 2014/11/05. 10.1152/physiol.00012.2014 ; PubMed Central PMCID: PMCPmc4280154. PubMed DOI PMC

Kobayashi N, DeLano FA, Schmid-Schonbein GW. Oxidative stress promotes endothelial cell apoptosis and loss of microvessels in the spontaneously hypertensive rats. Arterioscler Thromb Vasc Biol. 2005;25(10):2114–21. Epub 2005/07/23. 10.1161/01.ATV.0000178993.13222.f2 . PubMed DOI

Hsu YJ, Hsu SC, Huang SM, Lee HS, Lin SH, Tsai CS, et al. Hyperphosphatemia induces protective autophagy in endothelial cells through the inhibition of Akt/mTOR signaling. Journal of vascular surgery. 2015;62(1):210–21.e2. Epub 2014/05/07. 10.1016/j.jvs.2014.02.040 . PubMed DOI

Nussenzweig SC, Verma S, Finkel T. The role of autophagy in vascular biology. Circulation research. 2015;116(3):480–8. Epub 2015/01/31. 10.1161/circresaha.116.303805 ; PubMed Central PMCID: PMCPmc4313568. PubMed DOI PMC

Baffert F, Le T, Sennino B, Thurston G, Kuo CJ, Hu-Lowe D, et al. Cellular changes in normal blood capillaries undergoing regression after inhibition of VEGF signaling. American journal of physiology Heart and circulatory physiology. 2006;290(2):H547–59. Epub 2005/09/21. 10.1152/ajpheart.00616.2005 . PubMed DOI

Gottlieb RA, Andres AM, Sin J, Taylor DP. Untangling autophagy measurements: all fluxed up. Circulation research. 2015;116(3):504–14. Epub 2015/01/31. 10.1161/circresaha.116.303787 ; PubMed Central PMCID: PMCPmc4313387. PubMed DOI PMC

Korn C, Augustin HG. Mechanisms of Vessel Pruning and Regression. Developmental cell. 2015;34(1):5–17. Epub 2015/07/08. 10.1016/j.devcel.2015.06.004 . PubMed DOI

Stam F, van Guldener C, Becker A, Dekker JM, Heine RJ, Bouter LM, et al. Endothelial dysfunction contributes to renal function-associated cardiovascular mortality in a population with mild renal insufficiency: the Hoorn study. J Am Soc Nephrol. 2006;17(2):537–45. 10.1681/ASN.2005080834 . PubMed DOI

Shimizu A, Kitamura H, Masuda Y, Ishizaki M, Sugisaki Y, Yamanaka N. Rare glomerular capillary regeneration and subsequent capillary regression with endothelial cell apoptosis in progressive glomerulonephritis. Am J Pathol. 1997;151(5):1231–9. PubMed PMC

Kang DH, Hughes J, Mazzali M, Schreiner GF, Johnson RJ. Impaired angiogenesis in the remnant kidney model: II. Vascular endothelial growth factor administration reduces renal fibrosis and stabilizes renal function. J Am Soc Nephrol. 2001;12(7):1448–57. . PubMed

Maric-Bilkan C, Flynn ER, Chade AR. Microvascular disease precedes the decline in renal function in the streptozotocin-induced diabetic rat. American journal of physiology Renal physiology. 2012;302(3):F308–15. Epub 2011/10/28. 10.1152/ajprenal.00421.2011 ; PubMed Central PMCID: PMCPmc3287355. PubMed DOI PMC

Jacobi J, Porst M, Cordasic N, Namer B, Schmieder RE, Eckardt KU, et al. Subtotal nephrectomy impairs ischemia-induced angiogenesis and hindlimb re-perfusion in rats. Kidney Int. 2006;69(11):2013–21. Epub 2006/04/28. 10.1038/sj.ki.5000448 . PubMed DOI

Di Marco GS, Reuter S, Hillebrand U, Amler S, Konig M, Larger E, et al. The soluble VEGF receptor sFlt1 contributes to endothelial dysfunction in CKD. J Am Soc Nephrol. 2009;20(10):2235–45. Epub 2009/07/18. 10.1681/asn.2009010061 ; PubMed Central PMCID: PMCPmc2754110. PubMed DOI PMC

Tran ED, Yang M, Chen A, Delano FA, Murfee WL, Schmid-Schonbein GW. Matrix metalloproteinase activity causes VEGFR-2 cleavage and microvascular rarefaction in rat mesentery. Microcirculation. 2011;18(3):228–37. 10.1111/j.1549-8719.2011.00082.x PubMed DOI PMC

David S, Kumpers P, Lukasz A, Fliser D, Martens-Lobenhoffer J, Bode-Boger SM, et al. Circulating angiopoietin-2 levels increase with progress of chronic kidney disease. Nephrol Dial Transplant. 2010;25(8):2571–6. Epub 2010/02/25. 10.1093/ndt/gfq060 . PubMed DOI

Tsai YC, Lee CS, Chiu YW, Kuo HT, Lee SC, Hwang SJ, et al. Angiopoietin-2 as a Prognostic Biomarker of Major Adverse Cardiovascular Events and All-Cause Mortality in Chronic Kidney Disease. PloS one. 2015;10(8):e0135181 Epub 2015/08/15. 10.1371/journal.pone.0135181 PubMed DOI PMC

Shroff RC, Price KL, Kolatsi-Joannou M, Todd AF, Wells D, Deanfield J, et al. Circulating angiopoietin-2 is a marker for early cardiovascular disease in children on chronic dialysis. PloS one. 2013;8(2):e56273 Epub 2013/02/15. 10.1371/journal.pone.0056273 PubMed DOI PMC

Eklund L, Olsen BR. Tie receptors and their angiopoietin ligands are context-dependent regulators of vascular remodeling. Exp Cell Res. 2006;312(5):630–41. 10.1016/j.yexcr.2005.09.002 . PubMed DOI

Lobov IB, Brooks PC, Lang RA. Angiopoietin-2 displays VEGF-dependent modulation of capillary structure and endothelial cell survival in vivo. Proceedings of the National Academy of Sciences of the United States of America. 2002;99(17):11205–10. Epub 2002/08/07. 10.1073/pnas.172161899 ; PubMed Central PMCID: PMCPmc123234. PubMed DOI PMC

Norman M. Low birth weight and the developing vascular tree: a systematic review. Acta Paediatr. 2008;97(9):1165–72. 10.1111/j.1651-2227.2008.00904.x . PubMed DOI

Bonamy AK, Martin H, Jorneskog G, Norman M. Lower skin capillary density, normal endothelial function and higher blood pressure in children born preterm. Journal of internal medicine. 2007;262(6):635–42. Epub 2007/11/08. 10.1111/j.1365-2796.2007.01868.x . PubMed DOI

Franke D, Volker S, Haase S, Pavicic L, Querfeld U, Ehrich JH, et al. Prematurity, small for gestational age and perinatal parameters in children with congenital, hereditary and acquired chronic kidney disease. Nephrol Dial Transplant. 2010;25(12):3918–24. Epub 2010/06/02. 10.1093/ndt/gfq300 . PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...