The fluctuating ribosome: thermal molecular dynamics characterized by neutron scattering
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
27849042
PubMed Central
PMC5111069
DOI
10.1038/srep37138
PII: srep37138
Knihovny.cz E-zdroje
- MeSH
- archeální RNA chemie MeSH
- Haloarcula marismortui chemie MeSH
- malé podjednotky ribozomu archebakteriální chemie MeSH
- messenger RNA chemie MeSH
- neutronová difrakce MeSH
- simulace molekulární dynamiky * MeSH
- velké podjednotky ribozomu archebakteriální chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- archeální RNA MeSH
- messenger RNA MeSH
Conformational changes associated with ribosome function have been identified by X-ray crystallography and cryo-electron microscopy. These methods, however, inform poorly on timescales. Neutron scattering is well adapted for direct measurements of thermal molecular dynamics, the 'lubricant' for the conformational fluctuations required for biological activity. The method was applied to compare water dynamics and conformational fluctuations in the 30 S and 50 S ribosomal subunits from Haloarcula marismortui, under high salt, stable conditions. Similar free and hydration water diffusion parameters are found for both subunits. With respect to the 50 S subunit, the 30 S is characterized by a softer force constant and larger mean square displacements (MSD), which would facilitate conformational adjustments required for messenger and transfer RNA binding. It has been shown previously that systems from mesophiles and extremophiles are adapted to have similar MSD under their respective physiological conditions. This suggests that the results presented are not specific to halophiles in high salt but a general property of ribosome dynamics under corresponding, active conditions. The current study opens new perspectives for neutron scattering characterization of component functional molecular dynamics within the ribosome.
CNR IOM OGG F 38042 Grenoble France
Institut Charles Sadron CNRS UdS 67034 Strasbourg Cedex 2 France
Institut de Biologie Structurale Univ Grenoble Alpes CEA CNRS 38044 Grenoble France
Institut Laue Langevin F 38042 Grenoble France
Univ Grenoble Alpes LiPhy F 38044 Grenoble France
Weizmann Institute Department of Structural Biology 76100 Rehovot Israel
Zobrazit více v PubMed
Nissen P., Hansen J., Ban N., Moore P. B. & Steitz T. A. The structural basis of ribosome activity in peptide bond synthesis. Science 289, 920–930 (2000). PubMed
Krupkin M. et al.. A vestige of a prebiotic bonding machine is functioning within the contemporary ribosome. Trans R Soc Lond B Biol Sci Sep 19 e-pub (2011). PubMed PMC
Bashan A. & Yonath A. The linkage between ribosomal crystallography, metal ions, heteropolytungstates and functional flexibility. Journal of molecular structure 890, 289–294, doi: 10.1016/j.molstruc.2008.03.043 (2008). PubMed DOI PMC
Yonath A. Large facilities and the evolving ribosome, the cellular machine for genetic-code translation. Journal of the Royal Society, Interface/the Royal Society 6 Suppl 5, S575–585, doi: 10.1098/rsif.2009.0167.focus (2009). PubMed DOI PMC
Zimmerman E. & Yonath A. Biological implications of the ribosome’s stunning stereochemistry. Chembiochem: a European journal of chemical biology 10, 63–72, doi: 10.1002/cbic.200800554 (2009). PubMed DOI
Fischer N., Konevega A. L., Wintermeyer W., Rodnina M. V. & Stark H. Ribosome dynamics and tRNA movement by time-resolved electron cryomicroscopy. Nature 466, 329–333, doi: 10.1038/nature09206 (2010). PubMed DOI
Frank J. & Agrawal R. K. A ratchet-like inter-subunit reorganization of the ribosome during translocation. Nature 406, 318–322, doi: 10.1038/35018597 (2000). PubMed DOI
Schuwirth B. S. et al.. Structures of the bacterial ribosome at 3.5 A resolution. Science 310, 827–834, doi: 10.1126/science.1117230 (2005). PubMed DOI
Noeske J. et al.. High-resolution structure of the Escherichia coli ribosome. Nature structural & molecular biology 22, 336–341, doi: 10.1038/nsmb.2994 (2015). PubMed DOI PMC
Horan L. H. & Noller H. F. Intersubunit movement is required for ribosomal translocation. Proceedings of the National Academy of Sciences of the United States of America 104, 4881–4885, doi: 10.1073/pnas.0700762104 (2007). PubMed DOI PMC
Yonath A. The search and its outcome: High-Resolution Structures of Ribosomal Particles from Mesophilic, Thermophilic, and Halophilic Bacteria at Various Functional States. Annu. Rev. Biophys. Biomol. Struct. 31, 257–273 (2002). PubMed
Sanbonmatsu K. Y. Computational studies of molecular machines: the ribosome. Current opinion in structural biology 22, 168–174, doi: 10.1016/j.sbi.2012.01.008 (2012). PubMed DOI PMC
Chacon P., Tama F. & Wriggers W. Mega-Dalton biomolecular motion captured from electron microscopy reconstructions. Journal of molecular biology 326, 485–492 (2003). PubMed
Wang Y., Rader A. J., Bahar I. & Jernigan R. L. Global ribosome motions revealed with elastic network model. Journal of structural biology 147, 302–314, doi: 10.1016/j.jsb.2004.01.005 (2004). PubMed DOI
Trylska J., Tozzini V. & McCammon J. A. Exploring global motions and correlations in the ribosome. Biophys J 89, 1455–1463, doi: 10.1529/biophysj.104.058495 (2005). PubMed DOI PMC
Zhang Z., Sanbonmatsu K. Y. & Voth G. A. Key intermolecular interactions in the E. coli 70S ribosome revealed by coarse-grained analysis. Journal of the American Chemical Society 133, 16828–16838, doi: 10.1021/ja2028487 (2011). PubMed DOI PMC
Zimmermann M. T., Jia K. & Jernigan R. L. Ribosome Mechanics Informs about Mechanism. Journal of molecular biology, doi: 10.1016/j.jmb.2015.12.003 (2015). PubMed DOI PMC
Zaccai G. The ecology of protein dynamics. Current Physical Chemistry, Special Issue on Quantum Nanobiology and Biophysical Chemistry, Jalkanen K. J. Ed. 3, 9–16 (2013).
Brooks C. L., Karplus M. & Pettitt B. M. Proteins; a theoretical perspective of dynamics, structure and thermodynamics. Adv Chem Phys 71, 74–95 (1988).
Gabel F. et al.. Protein dynamics studied by neutron scattering. Quarterly reviews of biophysics 35, 327–367 (2002). PubMed
Hu X. et al.. The dynamics of single protein molecules is non-equilibrium and self-similar over thirteen decades in time. Nature Physics 12, 171–174, doi: 10.1038/nphys3553 (2016). DOI
Tehei M. et al.. Adaptation to extreme environments: macromolecular dynamics in bacteria compared in vivo by neutron scattering. EMBO Rep 5, 66–70, doi: 10.1038/sj.embor.7400049 (2004). PubMed DOI PMC
Schiro G. et al.. Translational diffusion of hydration water correlates with functional motions in folded and intrinsically disordered proteins. Nature communications 6, 6490, doi: 10.1038/ncomms7490 (2015). PubMed DOI PMC
Mikl C. et al.. Softness of atherogenic lipoproteins: a comparison of very low density lipoprotein (VLDL) and low density lipoprotein (LDL) using elastic incoherent neutron scattering (EINS). Journal of the American Chemical Society 133, 13213–13215, doi: 10.1021/ja203679g (2011). PubMed DOI PMC
Peters J., Giudici-Orticoni M. T., Zaccai G. & Guiral M. Dynamics measured by neutron scattering correlates with the organization of bioenergetics complexes in natural membranes from hyperthermophile and mesophile bacteria. The European physical journal. E, Soft matter 36, 78, doi: 10.1140/epje/i2013-13078-y (2013). PubMed DOI
Marty V. et al.. Neutron scattering: a tool to detect in vivo thermal stress effects at the molecular dynamics level in micro-organisms. Journal of the Royal Society, Interface/the Royal Society 10, 20130003, doi: 10.1098/rsif.2013.0003 (2013). PubMed DOI PMC
Natali F., Gerelli Y., Stelletta C. & Peters J. Anomalous proton dynamics of water molecules in neural tissue as seen by quasi-elastic neutron scattering. Impact on medical imaging techniques. AIP Conf. Proc. 1518, 551, doi: 10.1063/1.4794632 (2013). DOI
Harms J. et al.. High resolution structure of the large ribosomal subunit from a mesophilic eubacterium. Cell 107, 679–688 (2001). PubMed
Bonnete F., Madern D. & Zaccai G. Stability against denaturation mechanisms in halophilic malate dehydrogenase “adapt” to solvent conditions. Journal of molecular biology 244, 436–447, doi: 10.1006/jmbi.1994.1741 (1994). PubMed DOI
Zaccai G. Hydration shells with a pinch of salt. Biopolymers 99, 233–238, doi: 10.1002/bip.22154 (2013). PubMed DOI
Fitter J., Lechner R. E., Buldt G. & Dencher N. A. Internal molecular motions of bacteriorhodopsin: hydration-induced flexibility studied by quasielastic incoherent neutron scattering using oriented purple membranes. Proceedings of the National Academy of Sciences of the United States of America 93, 7600–7605 (1996). PubMed PMC
Bellissent-Funel M. C. Hydration in protein dynamics and function. Joumal of Molecular Liquids 84, 39–52 (2000).
Ginzburg M., Sachs L. & Ginzburg B. Z. Ion Metabolism in a Halobacterium. I. Influence of age of culture on intracellular concentrations. Journal of General Physiology 55, 187–207 (1970). PubMed PMC
Tehei M. et al.. Neutron scattering reveals extremely slow cell water in a Dead Sea organism. Proceedings of the National Academy of Sciences of the United States of America 104, 766–771, doi: 10.1073/pnas.0601639104 (2007). PubMed DOI PMC
Tehei M., Madern D., Pfister C. & Zaccai G. Fast dynamics of halophilic malate dehydrogenase and BSA measured by neutron scattering under various solvent conditions influencing protein stability. Proceedings of the National Academy of Sciences of the United States of America 98, 14356–14361, doi: 10.1073/pnas.251537298 (2001). PubMed DOI PMC
Li Z. Q. et al.. Structure of phenylalanine-accepting transfer ribonucleic acid and of its environment in aqueous solvents with different salts. Biochemistry 22, 4380–4388 (1983). PubMed
Schober H. An introduction to the theory of nuclear neutron scattering in condensed matter. Journal of Neutron Research 17, 109–357 (2014).
Wood K., Lehnert U., Kessler B., Zaccai G. & Oesterhelt D. Hydration dependence of active core fluctuations in bacteriorhodopsin. Biophys J 95, 194–202, doi: 10.1529/biophysj.107.120386 (2008). PubMed DOI PMC
Gallat F. X. et al.. Dynamical coupling of intrinsically disordered proteins and their hydration water: comparison with folded soluble and membrane proteins. Biophys J 103, 129–136, doi: 10.1016/j.bpj.2012.05.027 (2012). PubMed DOI PMC
Herschlag D., Allred B. E. & Gowrishankar S. From static to dynamic: the need for structural ensembles and a predictive model of RNA folding and function. Current opinion in structural biology 30, 125–133, doi: 10.1016/j.sbi.2015.02.006 (2015). PubMed DOI PMC
Zaccai G. & Xian S. Y. Structure of phenylalanine-accepting transfer ribonucleic acid and of its environment in aqueous solvents with different salts. Biochemistry 27, 1316–1320 (1988). PubMed
Furtig B., Buck J., Richter C. & Schwalbe H. Functional dynamics of RNA ribozymes studied by NMR spectroscopy. Methods in molecular biology 848, 185–199, doi: 10.1007/978-1-61779-545-9_12 (2012). PubMed DOI
Buck J. et al.. NMR spectroscopic characterization of the adenine-dependent hairpin ribozyme. Chembiochem: a European journal of chemical biology 10, 2100–2110, doi: 10.1002/cbic.200900196 (2009). PubMed DOI
Stadler A. M. et al.. Thermal fluctuations of haemoglobin from different species: adaptation to temperature via conformational dynamics. Journal of the Royal Society, Interface/the Royal Society 9, 2845–2855, doi: 10.1098/rsif.2012.0364 (2012). PubMed DOI PMC
Caliskan G. et al.. Dynamic transition in tRNA is solvent induced. Journal of the American Chemical Society 128, 32–33, doi: 10.1021/ja056444i (2006). PubMed DOI
Réat V. et al.. Dynamics of different functional parts of bacteriorhodopsin: H-2H labeling and neutron scattering. Proceedings of the National Academy of Sciences of the United States of America 95, 4970–4975 (1998). PubMed PMC
Langer J. A., Engelman D. M. & Moore P. B. Neutron-scattering studies of the ribosome of Escherichia coli: a provisional map of the locations of proteins S3, S4, S5, S7, S8 and S9 in the 30 S subunit. Journal of molecular biology 119, 463–485 (1978). PubMed
Ollivier J., Plazanet M., Schober H. & Cook J. C. First results with the upgraded IN5 disk chopper cold time-of-flight spectrometer. Physica B: Condensed Matter 350, 173–177 (2004).
Frick B. & Gonzalez M. Five years operation of the second generation backscattering spectrometer IN16—a retrospective, recent developments and plans. Physica B: Condensed Matter 301, 8–19 (2001).
Richard D., Ferrand M. & Kearley G. J. Analysis and visualisation of neutron-scattering data. J. Neutron Res. 4, 33–39, doi: 10.1080/10238169608200065 (1996). DOI
Smith J. C. Protein dynamics: comparison of simulations with inelastic neutron scattering experiments. Quarterly reviews of biophysics 24, 227–291 (1991). PubMed
Rahman A., Singwi K. S. & Sjölander A. Theory of Slow Neutron Scattering by Liquids. I. Phys. Rev. 126, 986–996 (1962).
Zaccai G. Neutron scattering perspectives for protein dynamics. J. Non-Cryst. Solids 357, 615–621 (2011).
Magazu S., Migliardo F. & Benedetto A. Mean square displacements from elastic incoherent neutron scattering evaluated by spectrometers working with different energy resolution on dry and hydrated (H2O and D2O) lysozyme. The journal of physical chemistry. B 114, 9268–9274, doi: 10.1021/jp102436y (2010). PubMed DOI
Vural D., Hong L., Smith J. C. & Glyde H. R. Motional displacements in proteins: The origin of wave-vector-dependent values. Physical Review E 91, doi: 10.1103/PhysRevE.91.052705 (2015). PubMed DOI
Réat V., Zaccai G., Ferrand M. & Pfister C. In Biological Macromolecular Dynamics (eds Cusack S. et al..) 117–122 (Adenine Press, 1997).
Wood K. et al.. Dynamical heterogeneity of specific amino acids in bacteriorhodopsin. Journal of molecular biology 380, 581–591, doi: S0022-2836(08)00564-0 [pii]10.1016/j.jmb.2008.04.077 (2008). PubMed
Zaccai G. How soft is a protein? A protein dynamics force constant measured by neutron scattering. Science 288, 1604–1607 (2000). PubMed