The fluctuating ribosome: thermal molecular dynamics characterized by neutron scattering

. 2016 Nov 16 ; 6 () : 37138. [epub] 20161116

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27849042

Conformational changes associated with ribosome function have been identified by X-ray crystallography and cryo-electron microscopy. These methods, however, inform poorly on timescales. Neutron scattering is well adapted for direct measurements of thermal molecular dynamics, the 'lubricant' for the conformational fluctuations required for biological activity. The method was applied to compare water dynamics and conformational fluctuations in the 30 S and 50 S ribosomal subunits from Haloarcula marismortui, under high salt, stable conditions. Similar free and hydration water diffusion parameters are found for both subunits. With respect to the 50 S subunit, the 30 S is characterized by a softer force constant and larger mean square displacements (MSD), which would facilitate conformational adjustments required for messenger and transfer RNA binding. It has been shown previously that systems from mesophiles and extremophiles are adapted to have similar MSD under their respective physiological conditions. This suggests that the results presented are not specific to halophiles in high salt but a general property of ribosome dynamics under corresponding, active conditions. The current study opens new perspectives for neutron scattering characterization of component functional molecular dynamics within the ribosome.

Zobrazit více v PubMed

Nissen P., Hansen J., Ban N., Moore P. B. & Steitz T. A. The structural basis of ribosome activity in peptide bond synthesis. Science 289, 920–930 (2000). PubMed

Krupkin M. et al.. A vestige of a prebiotic bonding machine is functioning within the contemporary ribosome. Trans R Soc Lond B Biol Sci Sep 19 e-pub (2011). PubMed PMC

Bashan A. & Yonath A. The linkage between ribosomal crystallography, metal ions, heteropolytungstates and functional flexibility. Journal of molecular structure 890, 289–294, doi: 10.1016/j.molstruc.2008.03.043 (2008). PubMed DOI PMC

Yonath A. Large facilities and the evolving ribosome, the cellular machine for genetic-code translation. Journal of the Royal Society, Interface/the Royal Society 6 Suppl 5, S575–585, doi: 10.1098/rsif.2009.0167.focus (2009). PubMed DOI PMC

Zimmerman E. & Yonath A. Biological implications of the ribosome’s stunning stereochemistry. Chembiochem: a European journal of chemical biology 10, 63–72, doi: 10.1002/cbic.200800554 (2009). PubMed DOI

Fischer N., Konevega A. L., Wintermeyer W., Rodnina M. V. & Stark H. Ribosome dynamics and tRNA movement by time-resolved electron cryomicroscopy. Nature 466, 329–333, doi: 10.1038/nature09206 (2010). PubMed DOI

Frank J. & Agrawal R. K. A ratchet-like inter-subunit reorganization of the ribosome during translocation. Nature 406, 318–322, doi: 10.1038/35018597 (2000). PubMed DOI

Schuwirth B. S. et al.. Structures of the bacterial ribosome at 3.5 A resolution. Science 310, 827–834, doi: 10.1126/science.1117230 (2005). PubMed DOI

Noeske J. et al.. High-resolution structure of the Escherichia coli ribosome. Nature structural & molecular biology 22, 336–341, doi: 10.1038/nsmb.2994 (2015). PubMed DOI PMC

Horan L. H. & Noller H. F. Intersubunit movement is required for ribosomal translocation. Proceedings of the National Academy of Sciences of the United States of America 104, 4881–4885, doi: 10.1073/pnas.0700762104 (2007). PubMed DOI PMC

Yonath A. The search and its outcome: High-Resolution Structures of Ribosomal Particles from Mesophilic, Thermophilic, and Halophilic Bacteria at Various Functional States. Annu. Rev. Biophys. Biomol. Struct. 31, 257–273 (2002). PubMed

Sanbonmatsu K. Y. Computational studies of molecular machines: the ribosome. Current opinion in structural biology 22, 168–174, doi: 10.1016/j.sbi.2012.01.008 (2012). PubMed DOI PMC

Chacon P., Tama F. & Wriggers W. Mega-Dalton biomolecular motion captured from electron microscopy reconstructions. Journal of molecular biology 326, 485–492 (2003). PubMed

Wang Y., Rader A. J., Bahar I. & Jernigan R. L. Global ribosome motions revealed with elastic network model. Journal of structural biology 147, 302–314, doi: 10.1016/j.jsb.2004.01.005 (2004). PubMed DOI

Trylska J., Tozzini V. & McCammon J. A. Exploring global motions and correlations in the ribosome. Biophys J 89, 1455–1463, doi: 10.1529/biophysj.104.058495 (2005). PubMed DOI PMC

Zhang Z., Sanbonmatsu K. Y. & Voth G. A. Key intermolecular interactions in the E. coli 70S ribosome revealed by coarse-grained analysis. Journal of the American Chemical Society 133, 16828–16838, doi: 10.1021/ja2028487 (2011). PubMed DOI PMC

Zimmermann M. T., Jia K. & Jernigan R. L. Ribosome Mechanics Informs about Mechanism. Journal of molecular biology, doi: 10.1016/j.jmb.2015.12.003 (2015). PubMed DOI PMC

Zaccai G. The ecology of protein dynamics. Current Physical Chemistry, Special Issue on Quantum Nanobiology and Biophysical Chemistry, Jalkanen K. J. Ed. 3, 9–16 (2013).

Brooks C. L., Karplus M. & Pettitt B. M. Proteins; a theoretical perspective of dynamics, structure and thermodynamics. Adv Chem Phys 71, 74–95 (1988).

Gabel F. et al.. Protein dynamics studied by neutron scattering. Quarterly reviews of biophysics 35, 327–367 (2002). PubMed

Hu X. et al.. The dynamics of single protein molecules is non-equilibrium and self-similar over thirteen decades in time. Nature Physics 12, 171–174, doi: 10.1038/nphys3553 (2016). DOI

Tehei M. et al.. Adaptation to extreme environments: macromolecular dynamics in bacteria compared in vivo by neutron scattering. EMBO Rep 5, 66–70, doi: 10.1038/sj.embor.7400049 (2004). PubMed DOI PMC

Schiro G. et al.. Translational diffusion of hydration water correlates with functional motions in folded and intrinsically disordered proteins. Nature communications 6, 6490, doi: 10.1038/ncomms7490 (2015). PubMed DOI PMC

Mikl C. et al.. Softness of atherogenic lipoproteins: a comparison of very low density lipoprotein (VLDL) and low density lipoprotein (LDL) using elastic incoherent neutron scattering (EINS). Journal of the American Chemical Society 133, 13213–13215, doi: 10.1021/ja203679g (2011). PubMed DOI PMC

Peters J., Giudici-Orticoni M. T., Zaccai G. & Guiral M. Dynamics measured by neutron scattering correlates with the organization of bioenergetics complexes in natural membranes from hyperthermophile and mesophile bacteria. The European physical journal. E, Soft matter 36, 78, doi: 10.1140/epje/i2013-13078-y (2013). PubMed DOI

Marty V. et al.. Neutron scattering: a tool to detect in vivo thermal stress effects at the molecular dynamics level in micro-organisms. Journal of the Royal Society, Interface/the Royal Society 10, 20130003, doi: 10.1098/rsif.2013.0003 (2013). PubMed DOI PMC

Natali F., Gerelli Y., Stelletta C. & Peters J. Anomalous proton dynamics of water molecules in neural tissue as seen by quasi-elastic neutron scattering. Impact on medical imaging techniques. AIP Conf. Proc. 1518, 551, doi: 10.1063/1.4794632 (2013). DOI

Harms J. et al.. High resolution structure of the large ribosomal subunit from a mesophilic eubacterium. Cell 107, 679–688 (2001). PubMed

Bonnete F., Madern D. & Zaccai G. Stability against denaturation mechanisms in halophilic malate dehydrogenase “adapt” to solvent conditions. Journal of molecular biology 244, 436–447, doi: 10.1006/jmbi.1994.1741 (1994). PubMed DOI

Zaccai G. Hydration shells with a pinch of salt. Biopolymers 99, 233–238, doi: 10.1002/bip.22154 (2013). PubMed DOI

Fitter J., Lechner R. E., Buldt G. & Dencher N. A. Internal molecular motions of bacteriorhodopsin: hydration-induced flexibility studied by quasielastic incoherent neutron scattering using oriented purple membranes. Proceedings of the National Academy of Sciences of the United States of America 93, 7600–7605 (1996). PubMed PMC

Bellissent-Funel M. C. Hydration in protein dynamics and function. Joumal of Molecular Liquids 84, 39–52 (2000).

Ginzburg M., Sachs L. & Ginzburg B. Z. Ion Metabolism in a Halobacterium. I. Influence of age of culture on intracellular concentrations. Journal of General Physiology 55, 187–207 (1970). PubMed PMC

Tehei M. et al.. Neutron scattering reveals extremely slow cell water in a Dead Sea organism. Proceedings of the National Academy of Sciences of the United States of America 104, 766–771, doi: 10.1073/pnas.0601639104 (2007). PubMed DOI PMC

Tehei M., Madern D., Pfister C. & Zaccai G. Fast dynamics of halophilic malate dehydrogenase and BSA measured by neutron scattering under various solvent conditions influencing protein stability. Proceedings of the National Academy of Sciences of the United States of America 98, 14356–14361, doi: 10.1073/pnas.251537298 (2001). PubMed DOI PMC

Li Z. Q. et al.. Structure of phenylalanine-accepting transfer ribonucleic acid and of its environment in aqueous solvents with different salts. Biochemistry 22, 4380–4388 (1983). PubMed

Schober H. An introduction to the theory of nuclear neutron scattering in condensed matter. Journal of Neutron Research 17, 109–357 (2014).

Wood K., Lehnert U., Kessler B., Zaccai G. & Oesterhelt D. Hydration dependence of active core fluctuations in bacteriorhodopsin. Biophys J 95, 194–202, doi: 10.1529/biophysj.107.120386 (2008). PubMed DOI PMC

Gallat F. X. et al.. Dynamical coupling of intrinsically disordered proteins and their hydration water: comparison with folded soluble and membrane proteins. Biophys J 103, 129–136, doi: 10.1016/j.bpj.2012.05.027 (2012). PubMed DOI PMC

Herschlag D., Allred B. E. & Gowrishankar S. From static to dynamic: the need for structural ensembles and a predictive model of RNA folding and function. Current opinion in structural biology 30, 125–133, doi: 10.1016/j.sbi.2015.02.006 (2015). PubMed DOI PMC

Zaccai G. & Xian S. Y. Structure of phenylalanine-accepting transfer ribonucleic acid and of its environment in aqueous solvents with different salts. Biochemistry 27, 1316–1320 (1988). PubMed

Furtig B., Buck J., Richter C. & Schwalbe H. Functional dynamics of RNA ribozymes studied by NMR spectroscopy. Methods in molecular biology 848, 185–199, doi: 10.1007/978-1-61779-545-9_12 (2012). PubMed DOI

Buck J. et al.. NMR spectroscopic characterization of the adenine-dependent hairpin ribozyme. Chembiochem: a European journal of chemical biology 10, 2100–2110, doi: 10.1002/cbic.200900196 (2009). PubMed DOI

Stadler A. M. et al.. Thermal fluctuations of haemoglobin from different species: adaptation to temperature via conformational dynamics. Journal of the Royal Society, Interface/the Royal Society 9, 2845–2855, doi: 10.1098/rsif.2012.0364 (2012). PubMed DOI PMC

Caliskan G. et al.. Dynamic transition in tRNA is solvent induced. Journal of the American Chemical Society 128, 32–33, doi: 10.1021/ja056444i (2006). PubMed DOI

Réat V. et al.. Dynamics of different functional parts of bacteriorhodopsin: H-2H labeling and neutron scattering. Proceedings of the National Academy of Sciences of the United States of America 95, 4970–4975 (1998). PubMed PMC

Langer J. A., Engelman D. M. & Moore P. B. Neutron-scattering studies of the ribosome of Escherichia coli: a provisional map of the locations of proteins S3, S4, S5, S7, S8 and S9 in the 30 S subunit. Journal of molecular biology 119, 463–485 (1978). PubMed

Ollivier J., Plazanet M., Schober H. & Cook J. C. First results with the upgraded IN5 disk chopper cold time-of-flight spectrometer. Physica B: Condensed Matter 350, 173–177 (2004).

Frick B. & Gonzalez M. Five years operation of the second generation backscattering spectrometer IN16—a retrospective, recent developments and plans. Physica B: Condensed Matter 301, 8–19 (2001).

Richard D., Ferrand M. & Kearley G. J. Analysis and visualisation of neutron-scattering data. J. Neutron Res. 4, 33–39, doi: 10.1080/10238169608200065 (1996). DOI

Smith J. C. Protein dynamics: comparison of simulations with inelastic neutron scattering experiments. Quarterly reviews of biophysics 24, 227–291 (1991). PubMed

Rahman A., Singwi K. S. & Sjölander A. Theory of Slow Neutron Scattering by Liquids. I. Phys. Rev. 126, 986–996 (1962).

Zaccai G. Neutron scattering perspectives for protein dynamics. J. Non-Cryst. Solids 357, 615–621 (2011).

Magazu S., Migliardo F. & Benedetto A. Mean square displacements from elastic incoherent neutron scattering evaluated by spectrometers working with different energy resolution on dry and hydrated (H2O and D2O) lysozyme. The journal of physical chemistry. B 114, 9268–9274, doi: 10.1021/jp102436y (2010). PubMed DOI

Vural D., Hong L., Smith J. C. & Glyde H. R. Motional displacements in proteins: The origin of wave-vector-dependent values. Physical Review E 91, doi: 10.1103/PhysRevE.91.052705 (2015). PubMed DOI

Réat V., Zaccai G., Ferrand M. & Pfister C. In Biological Macromolecular Dynamics (eds Cusack S. et al..) 117–122 (Adenine Press, 1997).

Wood K. et al.. Dynamical heterogeneity of specific amino acids in bacteriorhodopsin. Journal of molecular biology 380, 581–591, doi: S0022-2836(08)00564-0 [pii]10.1016/j.jmb.2008.04.077 (2008). PubMed

Zaccai G. How soft is a protein? A protein dynamics force constant measured by neutron scattering. Science 288, 1604–1607 (2000). PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Neutron scattering in photosynthesis research: recent advances and perspectives for testing crop plants

. 2021 Dec ; 150 (1-3) : 41-49. [epub] 20200602

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...