Iodine Absorption Cells Purity Testing

. 2017 Jan 06 ; 17 (1) : . [epub] 20170106

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28067834

This article deals with the evaluation of the chemical purity of iodine-filled absorption cells and the optical frequency references used for the frequency locking of laser standards. We summarize the recent trends and progress in absorption cell technology and we focus on methods for iodine cell purity testing. We compare two independent experimental systems based on the laser-induced fluorescence method, showing an improvement of measurement uncertainty by introducing a compensation system reducing unwanted influences. We show the advantages of this technique, which is relatively simple and does not require extensive hardware equipment. As an alternative to the traditionally used methods we propose an approach of hyperfine transitions' spectral linewidth measurement. The key characteristic of this method is demonstrated on a set of testing iodine cells. The relationship between laser-induced fluorescence and transition linewidth methods will be presented as well as a summary of the advantages and disadvantages of the proposed technique (in comparison with traditional measurement approaches).

Zobrazit více v PubMed

Leute J., Huntemann N., Lipphardt B., Tamm C., Nisbet-Jones P.B.R., King S.A., Godun R.M., Jones J.M., Margolis H.S., Whibberley P.B., et al. Frequency Comparison of 171Yb+ Ion Optical Clocks at PTB and NPL via GPS PPP. IEEE Trans. Ultrason. Ferroelectr. 2016;63:981–985. doi: 10.1109/TUFFC.2016.2524988. PubMed DOI

Nicholson T.L., Campbell S.L., Hutson R.B., Marti G.E., Bloom B.J., McNally R.L., Zhang W., Barrett M.D., Safronova M.S., Strouse G.F., et al. Systematic evaluation of an atomic clock at 2 × 10−18 total uncertainty. Nat. Commun. 2015;6:6896. doi: 10.1038/ncomms7896. PubMed DOI PMC

Abgrall M., Chupin B., De Sarlo L., Guena J., Laurent P., Le Coq Y., Le Targat R., Lodewyck J., Lours M., Rosenbusch P., et al. Atomic fountains and optical clocks at SYRTE: Status and perspectives. C. R. Phys. 2015;16:461–470. doi: 10.1016/j.crhy.2015.03.010. DOI

Huntemann N., Sanner C., Lipphardt B., Tamm C., Peik E. Single-Ion Atomic Clock with 3 × 10−18 Systematic Uncertainty. Phys. Rev. Lett. 2016;116:063001. doi: 10.1103/PhysRevLett.116.063001. PubMed DOI

Goebel E.O., Siegner U. Quantum Metrology: Foundation of Units and Measurement. Wiley; Hoboken, NJ, USA: 2015.

Stellmer S., Schreal M., Kazakov G., Yoshimura K., Schumm T. Towards a measurement of the nuclear clock transition in Th-229; Proceedings of the 8th Symposium on Frequency Standards and Metrology; Potsdam, Germany. 12–16 October 2015.

Schuldt T., Doringshoff K., Kovalchuk E., Gohlke M., Weise D., Johann U., Peters A., Braxmaier C. An Absolute Optical Frequency Reference Based on Doppler-Free Spectroscopy of Molecular Iodine Developed for Future Applications in Space; Proceedings of the 2014 DGaO Proceedings; Brno, Czech Republic. 26–29 May 2014.

Balling P., Fischer M., Kubina P., Holzwarth R. Absolute frequency measurement of wavelength standard at 1542 nm: Acetylene stabilized DFB laser. Opt. Express. 2005;13:9196–9201. doi: 10.1364/OPEX.13.009196. PubMed DOI

D’Agostino G., Robertsson L., Zucco M., Pisani M., Germak A. A low-finesse Fabry-Perot interferometer for use in displacement measurements with applications in absolute gravimetry. Appl. Phys. B Lasers Opt. 2012;106:829–834. doi: 10.1007/s00340-011-4747-1. DOI

Quinn T.J. Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2001) Metrologia. 2003;40:103–133. doi: 10.1088/0026-1394/40/2/316. DOI

Edwards C.S., Margolis H.S., Barwood G.P., Lea S.N., Gill P., Huang G.L., Rowley W.R.C. Absolute frequency measurement of a 1.5 μm acetylene standard by use of a combined frequency chain and femtosecond comb. Opt. Lett. 2004;29:566–568. doi: 10.1364/OL.29.000566. PubMed DOI

Bruner A., Mahal V., Kiryuschev I., Arie A., Arbore M.A., Fejer M.M. Frequency stability at the kilohertz level of a rubidium-locked diode laser at 192.114 THz. Appl. Opt. 1998;37:6410–6414. doi: 10.1364/AO.37.006410. PubMed DOI

Fredin-Picard S., Robertsson L., Ma L.S., Nyholm K., Merimaa M., Ahola T.E., Balling P., Kren P., Wallerand J.P. Comparison of 127I2− stabilized frequency-doubled Nd:YAG lasers at the Bureau International des Poids et Mesures. Appl. Opt. 2003;42:1019–1028. doi: 10.1364/AO.42.001019. PubMed DOI

Hrabina J., Lazar J., Klapetek P., Cip O. Multidimensional interferometric tool for the local probe microscopy nanometrology. Meas. Sci. Technol. 2011;22:094030. doi: 10.1088/0957-0233/22/9/094030. DOI

Ye J., Ma L.S., Hall J.L. Molecular iodine clock. Phys. Rev. Lett. 2001;87:270801. doi: 10.1103/PhysRevLett.87.270801. PubMed DOI

Lazar J., Hrabina J., Jedlicka P., Cip O. Absolute frequency shifts of iodine cells for laser stabilization. Metrologia. 2009;46:450–456. doi: 10.1088/0026-1394/46/5/008. DOI

Simmons J.D., Hougen J.T. Atlas of I2 Spectrum from 19,000 to 18,000 cm−1. J. Res. Natl. Bur. Stand. Phys. Chem. 1977;81:25–80. doi: 10.6028/jres.081A.006. DOI

Gerstenkorn S., Luc P., Verges J., Chevillard J. Atlas du Spectre D’absorption de la Molécule D’iode. Laboratoire Aimé Cotton; Orsay, France: 1978.

Mironov A.V., Privalov V.E., Savelev S.K. Complete calculated atlas of the absorption spectrum of iodine-127 (B-X system of bands) and complex of programs for the tabulation of iodine lines. Opt. Spectrosc. 1997;82:332–333.

Zucco M., Robertsson L., Wallerand J.P. Laser-induced fluorescence as a tool to verify the reproducibility of iodine-based laser standards: A study of 96 iodine cells. Metrologia. 2013;50:402–408. doi: 10.1088/0026-1394/50/4/402. DOI

Hrabina J., Sarbort M., Acef O., Du Burck F., Chiodo N., Hola M., Cip O., Lazar J. Spectral properties of molecular iodine in absorption cells filled to specified saturation pressure. Appl. Opt. 2014;53:7435–7441. doi: 10.1364/AO.53.007435. PubMed DOI

Lurie A., Light P.S., Anstie J., Stace T.M., Abbott P.C., Benabid F., Luiten A.N. Saturation spectroscopy of iodine in hollow-core optical fiber. Opt. Express. 2012;20:11906–11917. doi: 10.1364/OE.20.011906. PubMed DOI

Hald J., Nielsen L., Petersen J.C., Varming P., Pedersen J.E. Fiber laser optical frequency standard at 1.54 μm. Opt. Express. 2011;19:2052–2063. doi: 10.1364/OE.19.002052. PubMed DOI

Marty P.T., Morel J., Feurer T. All-Fiber Multi-Purpose Gas Cells and Their Applications in Spectroscopy. J. Lightwave Technol. 2010;28:1236–1240. doi: 10.1109/JLT.2010.2044555. DOI

Quinn T.J., Chartier J.M. A New-Type of Iodine Cell for Stabilized Lasers. IEEE Trans. Instrum. Meas. 1993;42:405–406. doi: 10.1109/19.278591. DOI

Stern O., Volmer M. On the quenching-time of fluorescence. Physik. Zeitschr. 1919;20:183–188.

Fredin-Picard S. A Study of Contamination in 127I2 Cells Using Laser-Induced Fluorescence. Metrologia. 1989;26:235–244. doi: 10.1088/0026-1394/26/4/004. DOI

Nevsky A.Y., Holzwarth R., Reichert J., Udem T., Hansch T.W., von Zanthier J., Walther H., Schnatz H., Riehle F., Pokasov P.V., et al. Frequency comparison and absolute frequency measurement of I2 stabilized lasers at 532 nm. Opt. Commun. 2001;192:263–272. doi: 10.1016/S0030-4018(01)01190-7. DOI

Balling P., Smid M., Sebek P., Matus M., Tomanyiczka K., Banreti E. Comparison of primary standards of length: He-Ne lasers at λ = 633 nm frequency-stabilized to the hyperfine structure of I2. Metrologia. 1999;36:433–437. doi: 10.1088/0026-1394/36/5/5. DOI

Hrabina J., Petru F., Jedlicka P., Cip O., Lazar J. Purity of iodine cells and optical frequency shift of iodine-stabilized He-Ne lasers. Optoelectron. Adv. Mater. 2007;1:202–206.

Demtroder W. Laser Spectroscopy. 2nd ed. Springer; Berlin/Heidelberg, Germany: 1996.

Wallard A.J. Frequency Stabilization of Helium-Neon Laser by Saturated Absorption in Iodine Vapor. J. Phys. E Sci. Instrum. 1972;5:926–930. doi: 10.1088/0022-3735/5/9/025. DOI

Hall J.L., Hollberg L., Baer T., Robinson H.G. Optical Heterodyne Saturation Spectroscopy. Appl. Phys. Lett. 1981;39:680–682. doi: 10.1063/1.92867. DOI

Gill P., Thompson R.C. The Preparation and Analysis of Iodine Cells. Metrologia. 1987;23:161–166. doi: 10.1088/0026-1394/23/3/005. DOI

Philippe C., Chea E., Nishida Y., du Burck F., Acef O. Efficient third harmonic generation of a CW-fibered 1.5 µm laser diode. Appl. Phys. B. 2016;122 doi: 10.1007/s00340-016-6542-5. DOI

Jungner P.A., Swartz S., Eickhoff M., Ye J., Hall J.L., Waltman S. Absolute Frequency of the Molecular-Iodine Transition R(56) (32-0) near 532 nm. IEEE Trans. Instrum. Meas. 1995;44:151–154. doi: 10.1109/19.377796. DOI

Philippe C., Le Targat R., Holleville D., Lours M., Pham M.T., Hrabina J., Du Burck F., Wolf P., Acef O. Frequency tripled 1.5 μm telecom laser diode stabilized to iodine hyperfine line in the 10–15 range; Proceedings of the 2016 European Frequency and Time Forum (EFTF); York, UK. 4–7 April 2016.

Argence B., Prevost E., Leveque T., Le Goff R., Bize S., Lemonde P., Santarelli G. Prototype of an ultra-stable optical cavity for space applications. Opt. Express. 2012;20:25409–25420. doi: 10.1364/OE.20.025409. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...