Iodine Absorption Cells Purity Testing
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
28067834
PubMed Central
PMC5298675
DOI
10.3390/s17010102
PII: s17010102
Knihovny.cz E-resources
- Keywords
- absorption spectroscopy, frequency stability, iodine cells, laser spectroscopy, laser standards,
- Publication type
- Journal Article MeSH
This article deals with the evaluation of the chemical purity of iodine-filled absorption cells and the optical frequency references used for the frequency locking of laser standards. We summarize the recent trends and progress in absorption cell technology and we focus on methods for iodine cell purity testing. We compare two independent experimental systems based on the laser-induced fluorescence method, showing an improvement of measurement uncertainty by introducing a compensation system reducing unwanted influences. We show the advantages of this technique, which is relatively simple and does not require extensive hardware equipment. As an alternative to the traditionally used methods we propose an approach of hyperfine transitions' spectral linewidth measurement. The key characteristic of this method is demonstrated on a set of testing iodine cells. The relationship between laser-induced fluorescence and transition linewidth methods will be presented as well as a summary of the advantages and disadvantages of the proposed technique (in comparison with traditional measurement approaches).
See more in PubMed
Leute J., Huntemann N., Lipphardt B., Tamm C., Nisbet-Jones P.B.R., King S.A., Godun R.M., Jones J.M., Margolis H.S., Whibberley P.B., et al. Frequency Comparison of 171Yb+ Ion Optical Clocks at PTB and NPL via GPS PPP. IEEE Trans. Ultrason. Ferroelectr. 2016;63:981–985. doi: 10.1109/TUFFC.2016.2524988. PubMed DOI
Nicholson T.L., Campbell S.L., Hutson R.B., Marti G.E., Bloom B.J., McNally R.L., Zhang W., Barrett M.D., Safronova M.S., Strouse G.F., et al. Systematic evaluation of an atomic clock at 2 × 10−18 total uncertainty. Nat. Commun. 2015;6:6896. doi: 10.1038/ncomms7896. PubMed DOI PMC
Abgrall M., Chupin B., De Sarlo L., Guena J., Laurent P., Le Coq Y., Le Targat R., Lodewyck J., Lours M., Rosenbusch P., et al. Atomic fountains and optical clocks at SYRTE: Status and perspectives. C. R. Phys. 2015;16:461–470. doi: 10.1016/j.crhy.2015.03.010. DOI
Huntemann N., Sanner C., Lipphardt B., Tamm C., Peik E. Single-Ion Atomic Clock with 3 × 10−18 Systematic Uncertainty. Phys. Rev. Lett. 2016;116:063001. doi: 10.1103/PhysRevLett.116.063001. PubMed DOI
Goebel E.O., Siegner U. Quantum Metrology: Foundation of Units and Measurement. Wiley; Hoboken, NJ, USA: 2015.
Stellmer S., Schreal M., Kazakov G., Yoshimura K., Schumm T. Towards a measurement of the nuclear clock transition in Th-229; Proceedings of the 8th Symposium on Frequency Standards and Metrology; Potsdam, Germany. 12–16 October 2015.
Schuldt T., Doringshoff K., Kovalchuk E., Gohlke M., Weise D., Johann U., Peters A., Braxmaier C. An Absolute Optical Frequency Reference Based on Doppler-Free Spectroscopy of Molecular Iodine Developed for Future Applications in Space; Proceedings of the 2014 DGaO Proceedings; Brno, Czech Republic. 26–29 May 2014.
Balling P., Fischer M., Kubina P., Holzwarth R. Absolute frequency measurement of wavelength standard at 1542 nm: Acetylene stabilized DFB laser. Opt. Express. 2005;13:9196–9201. doi: 10.1364/OPEX.13.009196. PubMed DOI
D’Agostino G., Robertsson L., Zucco M., Pisani M., Germak A. A low-finesse Fabry-Perot interferometer for use in displacement measurements with applications in absolute gravimetry. Appl. Phys. B Lasers Opt. 2012;106:829–834. doi: 10.1007/s00340-011-4747-1. DOI
Quinn T.J. Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2001) Metrologia. 2003;40:103–133. doi: 10.1088/0026-1394/40/2/316. DOI
Edwards C.S., Margolis H.S., Barwood G.P., Lea S.N., Gill P., Huang G.L., Rowley W.R.C. Absolute frequency measurement of a 1.5 μm acetylene standard by use of a combined frequency chain and femtosecond comb. Opt. Lett. 2004;29:566–568. doi: 10.1364/OL.29.000566. PubMed DOI
Bruner A., Mahal V., Kiryuschev I., Arie A., Arbore M.A., Fejer M.M. Frequency stability at the kilohertz level of a rubidium-locked diode laser at 192.114 THz. Appl. Opt. 1998;37:6410–6414. doi: 10.1364/AO.37.006410. PubMed DOI
Fredin-Picard S., Robertsson L., Ma L.S., Nyholm K., Merimaa M., Ahola T.E., Balling P., Kren P., Wallerand J.P. Comparison of 127I2− stabilized frequency-doubled Nd:YAG lasers at the Bureau International des Poids et Mesures. Appl. Opt. 2003;42:1019–1028. doi: 10.1364/AO.42.001019. PubMed DOI
Hrabina J., Lazar J., Klapetek P., Cip O. Multidimensional interferometric tool for the local probe microscopy nanometrology. Meas. Sci. Technol. 2011;22:094030. doi: 10.1088/0957-0233/22/9/094030. DOI
Ye J., Ma L.S., Hall J.L. Molecular iodine clock. Phys. Rev. Lett. 2001;87:270801. doi: 10.1103/PhysRevLett.87.270801. PubMed DOI
Lazar J., Hrabina J., Jedlicka P., Cip O. Absolute frequency shifts of iodine cells for laser stabilization. Metrologia. 2009;46:450–456. doi: 10.1088/0026-1394/46/5/008. DOI
Simmons J.D., Hougen J.T. Atlas of I2 Spectrum from 19,000 to 18,000 cm−1. J. Res. Natl. Bur. Stand. Phys. Chem. 1977;81:25–80. doi: 10.6028/jres.081A.006. DOI
Gerstenkorn S., Luc P., Verges J., Chevillard J. Atlas du Spectre D’absorption de la Molécule D’iode. Laboratoire Aimé Cotton; Orsay, France: 1978.
Mironov A.V., Privalov V.E., Savelev S.K. Complete calculated atlas of the absorption spectrum of iodine-127 (B-X system of bands) and complex of programs for the tabulation of iodine lines. Opt. Spectrosc. 1997;82:332–333.
Zucco M., Robertsson L., Wallerand J.P. Laser-induced fluorescence as a tool to verify the reproducibility of iodine-based laser standards: A study of 96 iodine cells. Metrologia. 2013;50:402–408. doi: 10.1088/0026-1394/50/4/402. DOI
Hrabina J., Sarbort M., Acef O., Du Burck F., Chiodo N., Hola M., Cip O., Lazar J. Spectral properties of molecular iodine in absorption cells filled to specified saturation pressure. Appl. Opt. 2014;53:7435–7441. doi: 10.1364/AO.53.007435. PubMed DOI
Lurie A., Light P.S., Anstie J., Stace T.M., Abbott P.C., Benabid F., Luiten A.N. Saturation spectroscopy of iodine in hollow-core optical fiber. Opt. Express. 2012;20:11906–11917. doi: 10.1364/OE.20.011906. PubMed DOI
Hald J., Nielsen L., Petersen J.C., Varming P., Pedersen J.E. Fiber laser optical frequency standard at 1.54 μm. Opt. Express. 2011;19:2052–2063. doi: 10.1364/OE.19.002052. PubMed DOI
Marty P.T., Morel J., Feurer T. All-Fiber Multi-Purpose Gas Cells and Their Applications in Spectroscopy. J. Lightwave Technol. 2010;28:1236–1240. doi: 10.1109/JLT.2010.2044555. DOI
Quinn T.J., Chartier J.M. A New-Type of Iodine Cell for Stabilized Lasers. IEEE Trans. Instrum. Meas. 1993;42:405–406. doi: 10.1109/19.278591. DOI
Stern O., Volmer M. On the quenching-time of fluorescence. Physik. Zeitschr. 1919;20:183–188.
Fredin-Picard S. A Study of Contamination in 127I2 Cells Using Laser-Induced Fluorescence. Metrologia. 1989;26:235–244. doi: 10.1088/0026-1394/26/4/004. DOI
Nevsky A.Y., Holzwarth R., Reichert J., Udem T., Hansch T.W., von Zanthier J., Walther H., Schnatz H., Riehle F., Pokasov P.V., et al. Frequency comparison and absolute frequency measurement of I2 stabilized lasers at 532 nm. Opt. Commun. 2001;192:263–272. doi: 10.1016/S0030-4018(01)01190-7. DOI
Balling P., Smid M., Sebek P., Matus M., Tomanyiczka K., Banreti E. Comparison of primary standards of length: He-Ne lasers at λ = 633 nm frequency-stabilized to the hyperfine structure of I2. Metrologia. 1999;36:433–437. doi: 10.1088/0026-1394/36/5/5. DOI
Hrabina J., Petru F., Jedlicka P., Cip O., Lazar J. Purity of iodine cells and optical frequency shift of iodine-stabilized He-Ne lasers. Optoelectron. Adv. Mater. 2007;1:202–206.
Demtroder W. Laser Spectroscopy. 2nd ed. Springer; Berlin/Heidelberg, Germany: 1996.
Wallard A.J. Frequency Stabilization of Helium-Neon Laser by Saturated Absorption in Iodine Vapor. J. Phys. E Sci. Instrum. 1972;5:926–930. doi: 10.1088/0022-3735/5/9/025. DOI
Hall J.L., Hollberg L., Baer T., Robinson H.G. Optical Heterodyne Saturation Spectroscopy. Appl. Phys. Lett. 1981;39:680–682. doi: 10.1063/1.92867. DOI
Gill P., Thompson R.C. The Preparation and Analysis of Iodine Cells. Metrologia. 1987;23:161–166. doi: 10.1088/0026-1394/23/3/005. DOI
Philippe C., Chea E., Nishida Y., du Burck F., Acef O. Efficient third harmonic generation of a CW-fibered 1.5 µm laser diode. Appl. Phys. B. 2016;122 doi: 10.1007/s00340-016-6542-5. DOI
Jungner P.A., Swartz S., Eickhoff M., Ye J., Hall J.L., Waltman S. Absolute Frequency of the Molecular-Iodine Transition R(56) (32-0) near 532 nm. IEEE Trans. Instrum. Meas. 1995;44:151–154. doi: 10.1109/19.377796. DOI
Philippe C., Le Targat R., Holleville D., Lours M., Pham M.T., Hrabina J., Du Burck F., Wolf P., Acef O. Frequency tripled 1.5 μm telecom laser diode stabilized to iodine hyperfine line in the 10–15 range; Proceedings of the 2016 European Frequency and Time Forum (EFTF); York, UK. 4–7 April 2016.
Argence B., Prevost E., Leveque T., Le Goff R., Bize S., Lemonde P., Santarelli G. Prototype of an ultra-stable optical cavity for space applications. Opt. Express. 2012;20:25409–25420. doi: 10.1364/OE.20.025409. PubMed DOI