Selective binocular vision loss in two subterranean caviomorph rodents: Spalacopus cyanus and Ctenomys talarum
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28150809
PubMed Central
PMC5288697
DOI
10.1038/srep41704
PII: srep41704
Knihovny.cz E-zdroje
- MeSH
- colliculus superior metabolismus patologie MeSH
- hlodavci * MeSH
- poruchy zraku diagnóza etiologie MeSH
- retina metabolismus patologie MeSH
- retinální gangliové buňky metabolismus patologie MeSH
- slepota diagnóza etiologie MeSH
- velikost orgánu MeSH
- vidění binokulární * MeSH
- zraková pole MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
To what extent can the mammalian visual system be shaped by visual behavior? Here we analyze the shape of the visual fields, the densities and distribution of cells in the retinal ganglion-cell layer and the organization of the visual projections in two species of facultative non-strictly subterranean rodents, Spalacopus cyanus and Ctenomys talarum, aiming to compare these traits with those of phylogenetically closely related species possessing contrasting diurnal/nocturnal visual habits. S. cyanus shows a definite zone of frontal binocular overlap and a corresponding area centralis, but a highly reduced amount of ipsilateral retinal projections. The situation in C. talarum is more extreme as it lacks of a fronto-ventral area of binocular superposition, has no recognizable area centralis and shows no ipsilateral retinal projections except to the suprachiasmatic nucleus. In both species, the extension of the monocular visual field and of the dorsal region of binocular overlap as well as the whole set of contralateral visual projections, appear well-developed. We conclude that these subterranean rodents exhibit, paradoxically, diurnal instead of nocturnal visual specializations, but at the same time suffer a specific regression of the anatomical substrate for stereopsis. We discuss these findings in light of the visual ecology of subterranean lifestyles.
Departamento de Biología Facultad de Ciencias Universidad de Chile Santiago de Chile
Department of Zoology Faculty of Science Charles University Prague Prague Czech Republic
Facultad de Medicina Universidad Finis Terrae Santiago Chile
Lehrstuhl für Zoologie Technische Universität München Freising Weihenstephan Germany
Zobrazit více v PubMed
Nevo E. Mammalian evolution underground. The ecological-genetic-phenetic interfaces. Acta Theriol. (Warsz). 40, 9–31 (1995).
Begall S., Burda H. & Schleich C. E. Subterranean rodents: News from underground. (Springer-Verlag Berlin Heidelberg, 2007).
Tobler I. et al.. Rest-activity rhythm of the blind mole rat Spalax ehrenbergi under different lighting conditions. Behav. Brain Res. 96, 173–183 (1998). PubMed
Oosthuizen M. K., Cooper H. M. & Bennett N. C. Circadian rhythms of locomotor activity in solitary and social species of African mole-rats (family: Bathyergidae). J. Biol. Rhythms 18, 481–490 (2003). PubMed
Kott O., Sumbera R. & Němec P. Light perception in two strictly subterranean rodents: life in the dark or blue? PLoS One 5, e11810 (2010). PubMed PMC
Němec P., Cvekova P., Burda H., Benada O. & Peichl L. Visual systems and the role of vision in subterranean rodents: Diversity of retinal properties and visual system designs. In Begall S., Burda H., Schleich C. E. (eds), Subterranean Rodents: News from Underground. (Springer-Verlag Berlin Heidelberg, 2007).
Peichl L., Němec P. & Burda H. Unusual cone and rod properties in subterranean African mole-rats (Rodentia, Bathyergidae). Eur. J. Neurosci. 19, 1545–1558 (2004). PubMed
Němec P. et al.. The visual system in subterranean African mole-rats (Rodentia, Bathyergidae): Retina, subcortical visual nuclei and primary visual cortex. Brain Res. Bull. 75, 356–364 (2008). PubMed
Peichl L. et al.. Eye and vision in the subterranean rodent cururo (Spalacopus cyanus, Octodontidae). J. Comp. Neurol. 486, 197–208 (2005). PubMed
Schleich C. E., Vielma A., Glösmann M., Palacios A. G. & Peichl L. Retinal photoreceptors of two subterranean tuco-tuco species (Rodentia, Ctenomys): Morphology, topography, and spectral sensitivity. J. Comp. Neurol. 518, 4001–4015 (2010). PubMed
Němec P., Burda H. & Peichl L. Subcortical visual system of the African mole-rat Cryptomys anselli: to see or not to see? Eur. J. Neurosci. 20, 757–768 (2004). PubMed
Crish S. D., Dengler-Crish C. M. & Catania K. C. Central visual system of the naked mole-rat (Heterocephalus glaber). Anat. Rec. A. Discov. Mol. Cell. Evol. Biol. 288, 205–212 (2006). PubMed
Cooper H., Herbin M. & Nevo E. Ocular regression conceals adaptive progression of the visual system in a blind subterranean mammal. Nature 361, 156–159 (1993). PubMed
Herbin M., Repérant J. & Cooper H. M. Visual system of the fossorial mole-lemmings, Ellobius talpinus and Ellobius lutescens. J. Comp. Neurol. 346, 253–275 (1994). PubMed
Vega-Zuniga T. et al.. Does nocturnality drive binocular vision? Octodontine rodents as a case study. PLoS One 8, (2013). PubMed PMC
Upham N. S. & Patterson B. D. Diversification and biogeography of the Neotropical caviomorph lineage Octodontoidea (Rodentia: Hystricognathi). Mol. Phylogenet. Evol. 63, 417–429 (2012). PubMed
Reese B. E. ‘Hidden lamination’ in the dorsal lateral geniculate nucleus: the functional organization of this thalamic region in the rat. Brain Res. 472, 119–137 (1988). PubMed
Reese B. E. & Cowey A. The crossed projection from the temporal retina to the dorsal lateral geniculate nucleus in the rat. Neuroscience 20, 951–959 (1987). PubMed
Major D. E., Rodman H. R., Libedinsky C. & Karten H. J. Pattern of retinal projections in the California ground squirrel (Spermophilus beecheyi): Anterograde tracing study using cholera toxin. J. Comp. Neurol. 463, 317–340 (2003). PubMed
Morin L. P. & Studholme K. M. Retinofugal projections in the mouse. J. Comp. Neurol. 522, 3733–3753 (2014). PubMed PMC
Simpson J. I. The accessory optic system. Annu. Rev. Neurosci. 7, 13–41 (1984). PubMed
Rusak B. & Zucker I. Neural Regulation of Circadian Rhythms. Physiol. Rev. 59, 449–526 (1979). PubMed
Williams G. A., Calderone J. B. & Jacobs G. H. Photoreceptors and photopigments in a subterranean rodent, the pocket gopher (Thomomys bottae). J. Comp. Physiol. A. Neuroethol. Sens. Neural. Behav. Physiol. 191, 125–134 (2005). PubMed
Jacobs G. H., Calderone J. B., Fenwick J. A., Krogh K. & Williams G. A. Visual adaptations in a diurnal rodent, Octodon degus. J. Comp. Physiol. A. Neuroethol. Sens. Neural. Behav. Physiol. 189, 347–361 (2003). PubMed
Rocha F. A. de. F. et al.. The topography of cone photoreceptors in the retina of a diurnal rodent, the agouti (Dasyprocta aguti). Vis. Neurosci. 26, 167–175 (2009). PubMed
Ahnelt P. K. & Kolb H. The mammalian photoreceptor mosaic-adaptive design. Prog. Retin. Eye Res. 19, 711–777 (2000). PubMed
Urrejola D., Lacey E. A., Wieczorek J. R. & Ebensperger L. A. Daily activity patterns of free-living cururos (Spalacopus cyanus). J. Mammal. 86, 302–308 (2005).
Cutrera A. P., Antinuchi C. D., Mora M. S. & Vassallo A. I. Home-range and activity patterns of the south american subterranean rodent Ctenomys talarum. J. Mammal. 87, 1183–1191 (2006).
Begall S., Daan S., Burda H. & Overkamp G. J. F. Activity Patterns in a Subterranean Social Rodent, Spalacopus Cyanus (Octodontidae). J. Mammal. 83, 153–158 (2002).
Kott O., Němec P., Fremlová A., Mazoch V. & Šumbera R. Behavioural Tests Reveal Severe Visual Deficits in the Strictly Subterranean African Mole-Rats (Bathyergidae) but Efficient Vision in the Fossorial Rodent Coruro (Spalacopus cyanus. Octodontidae). Ethology 122, 682–694 (2016).
Heesy C. P. Ecomorphology of orbit orientation and the adaptive significance of binocular vision in primates and other mammals. Brain. Behav. Evol. 71, 54–67 (2008). PubMed
Silveira L. C. L., Picanço-Diniz C. W. & Oswaldo-Cruz E. Distribution and size of ganglion cells in the retinae of large Amazon rodents. Vis. Neurosci. 2, 221–235 (1989). PubMed
Kott O., Moritz R. E., Šumbera R., Burda H. & Němec P. Light propagation in burrows of subterranean rodents: tunnel system architecture but not photoreceptor sensitivity limits light sensation range. J. Zool. 294, 68–76 (2014).
Pettigrew J. D. Evolution of binocular vision. In: Visual Neuroscience (Sanderson K. J., Lewick W. R. eds) (Cambridge, UK: Cambridge University Press, 1986).
Warrant E. J. Seeing better at night: life style, eye design and the optimum strategy of spatial and temporal summation. Vision Res. 39, 1611–1630 (1999). PubMed
Reese B. E. & Cowey A. Projection lines and the ipsilateral retino-geniculate pathway in the hooded rat. Neuroscience 10, 1233–1247 (1983). PubMed
Barton R. A. Binocularity and brain evolution in primates. PNAS 101, 10113–10115 (2004). PubMed PMC
Heesy C. P. On the relationship between orbit orientation and binocular visual field overlap in mammals. Anat. Rec. A. Discov. Mol. Cell. Evol. Biol. 281, 1104–1110 (2004). PubMed
Wallace D. J. et al.. Rats maintain an overhead binocular field at the expense of constant fusion. Nature 498, 65–69 (2013). PubMed
Gallardo M. H. & Kirsch J. A. W. Molecular Relationships Among Octodontidae (Mammalia: Rodentia: Caviomorpha). J. Mamm. Evol. 8, 73–89 (2001).
Verzi D. H., Olivares A. I., Morgan C. C. & Álvarez A. Contrasting Phylogenetic and Diversity Patterns in Octodontoid Rodents and a New Definition of the Family Abrocomidae. J. Mamm. Evol. 23, 93–115 (2015).
Opazo J. A molecular timescale for caviomorph rodents (Mammalia, Hystricognathi). Mol. Phylogenet. Evol. 37, 932–937 (2005). PubMed
Verzi D. H., Olivares A. I. & Morgan C. C. The oldest South American tuco-tuco (late Pliocene, northwestern Argentina) and the boundaries of the genus Ctenomys (Rodentia, Ctenomyidae). Mamm. Biol. - Zeitschrift für Säugetierkd. 75, 243–252 (2010).
Verzi D. H. Phylogeny and adaptive diversity of rodents of the family Ctenomyidae (Caviomorpha): delimiting lineages and genera in the fossil record. J. Zool. 274, 386–394 (2008).
Cartmill M. New Views on Primate Origins. Evol. Anthropol. 1, 105–111 (1992).
Hall M. I. & Ross C. F. Eye shape and activity pattern in birds. J. Zool. 271, 437–444 (2007).
Larsson M. Binocular vision and ipsilateral retinal projections in relation to eye and forelimb coordination. Brain. Behav. Evol. 77, 219–230 (2011). PubMed
Larsson M. L. Binocular vision, the optic chiasm, and their associations with vertebrate motor behavior. Front. Ecol. Evol. 3, 89 (2015).
Troscianko J., von Bayern A. M. P., Chappell J., Rutz C. & Martin G. R. Extreme binocular vision and a straight bill facilitate tool use in New Caledonian crows. Nat. Commun. 3, 1110 (2012). PubMed
Walls G. L. The Vertebrate Eye And It’s Adaptive Radiation. Optom. Vis. Sci. 814 (1942).
Torres-mura J. C. & Contreras L. C. Spalacopus cyanus. Mamm. Species 594, 1–5 (1998).
Francescoli G. Sensory capabilities and communication in subterranean rodents. Life underground: the biology of subterranean rodents (Lacey E. A., Patton J. L. & Cameron G. N., eds) (University of Chicago Press, Illinois, 2000).
Jaksic F. M. Predation upon small mammals in shrublands and grasslands of southern South America: ecological correlates and presumable consequences. 59, 209–221 (1986).
Pettigrew J. D., Bhagwandin A., Haagensen M. & Manger P. R. Visual acuity and heterogeneities of retinal ganglion cell densities and the tapetum lucidum of the African elephant (Loxodonta africana). Brain. Behav. Evol. 75, 251–261 (2010). PubMed
Gundersen H. J. G. Notes on the estimation of the numerical density of arbitrary profiles: the edge effect. J. Microsc. 111, 219–223 (1977).
Garza-Gisholt E., Hemmi J. M., Hart N. S. & Collin S. P. A comparison of spatial analysis methods for the construction of topographic maps of retinal cell density. PLoS One 9, e93485 (2014). PubMed PMC
Merzin M. Applying stereological method in radiology. Volume measurement. At http://lepo.it.da.ut.ee/~markkom/volumest/ (2008).
Iwaniuk A. N. & Wylie D. R. W. Neural specialization for hovering in hummingbirds: hypertrophy of the pretectal nucleus Lentiformis mesencephali. J. Comp. Neurol. 500, 211–221 (2007). PubMed