Targeting Neuroblastoma Cell Surface Proteins: Recommendations for Homology Modeling of hNET, ALK, and TrkB
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article
PubMed
28163672
PubMed Central
PMC5247432
DOI
10.3389/fnmol.2017.00007
Knihovny.cz E-resources
- Keywords
- anaplastic lymphoma kinase, homology modeling, neuroblastoma, neurotrophic tyrosine kinase receptor, norepinephrine transporter, targeted therapy,
- Publication type
- Journal Article MeSH
Targeted therapy is a promising approach for treatment of neuroblastoma as evident from the large number of targeting agents employed in clinical practice today. In the absence of known crystal structures, researchers rely on homology modeling to construct template-based theoretical structures for drug design and testing. Here, we discuss three candidate cell surface proteins that are suitable for homology modeling: human norepinephrine transporter (hNET), anaplastic lymphoma kinase (ALK), and neurotrophic tyrosine kinase receptor 2 (NTRK2 or TrkB). When choosing templates, both sequence identity and structure quality are important for homology modeling and pose the first of many challenges in the modeling process. Homology modeling of hNET can be improved using template models of dopamine and serotonin transporters instead of the leucine transporter (LeuT). The extracellular domains of ALK and TrkB are yet to be exploited by homology modeling. There are several idiosyncrasies that require direct attention throughout the process of model construction, evaluation and refinement. Shifts/gaps in the alignment between the template and target, backbone outliers and side-chain rotamer outliers are among the main sources of physical errors in the structures. Low-conserved regions can be refined with loop modeling method. Residue hydrophobicity, accessibility to bound metals or glycosylation can aid in model refinement. We recommend resolving these idiosyncrasies as part of "good modeling practice" to obtain highest quality model. Decreasing physical errors in protein structures plays major role in the development of targeting agents and understanding of chemical interactions at the molecular level.
See more in PubMed
Al-Lazikani B., Jung J., Xiang Z. X., Honig B. (2001). Protein structure prediction. Curr. Opin. Chem. Biol. 5, 51–56. 10.1016/S1367-5931(00)00164-2 PubMed DOI
Andersen J., Ringsted K. B., Bang-Andersen B., Strømgaard K., Kristensen A. S. (2015). Binding site residues control inhibitor selectivity in the human norepinephrine transporter but not in the human dopamine transporter. Sci. Rep. 5:15650. 10.1038/srep15650 PubMed DOI PMC
Aricescu A. R., Hon W. C., Siebold C., Lu W., van der Merwe P. A., Jones E. Y. (2006). Molecular analysis of receptor protein tyrosine phosphatase μ-mediated cell adhesion. EMBO J. 25, 701–712. 10.1038/sj.emboj.7600974 PubMed DOI PMC
Aricescu A. R., Siebold C., Choudhuri K., Chang V. T., Lu W., Davis S. J., et al. . (2007). Structure of a tyrosine phosphatase adhesive interaction reveals a spacer-clamp mechanism. Science 317, 1217–1220. 10.1126/science.1144646 PubMed DOI
Arolas J. L., Broder C., Jefferson T., Guevara T., Sterchi E. E., Bode W., et al. . (2012). Structural basis for the sheddase function of human meprin β metalloproteinase at the plasma membrane. Proc. Natl. Acad. Sci. U S A 109, 16131–16136. 10.1073/pnas.1211076109 PubMed DOI PMC
Banfield M. J., Naylor R. L., Robertson A. G. S., Allen S. J., Dawbarn D., Brady R. L. (2001). Specificity in Trk receptor: neurotrophin interactions: the crystal structure of TrkB-d5 in complex with neurotrophin-4/5. Structure 9, 1191–1199. 10.1016/S0969-2126(01)00681-5 PubMed DOI
Barone G., Anderson J., Pearson A. D. J., Petrie K., Chesler L. (2013). New strategies in neuroblastoma: therapeutic targeting of MYCN and ALK. Clin. Cancer Res. 19, 5814–5821. 10.1158/1078-0432.ccr-13-0680 PubMed DOI PMC
Bertrand T., Kothe M., Liu J., Dupuy A., Rak A., Berne P. F., et al. . (2012). The crystal structures of TrkA and TrkB suggest key regions for achieving selective inhibition. J. Mol. Biol. 423, 439–453. 10.1016/j.jmb.2012.08.002 PubMed DOI
Bordner A. J. (2012). Force fields for homology modeling. Methods Mol. Biol. 857, 83–106. 10.1007/978-1-61779-588-6_4 PubMed DOI
Bordoli L., Kiefer F., Arnold K., Benkert P., Battey J., Schwede T. (2009). Protein structure homology modeling using SWISS-MODEL workspace. Nat. Protoc. 4, 1–13. 10.1038/nprot.2008.197 PubMed DOI
Brodeur G. M., Pritchard J., Berthold F., Carlsen N. L. T., Castel V., Castleberry R. P., et al. . (1993). Revisions of the international criteria for neuroblastoma diagnosis, staging and response to treatment. J. Clin. Oncol. 11, 1466–1477. PubMed
Butler K. V., Kalin J., Brochier C., Vistoli G., Langley B., Kozikowski A. P. (2010). Rational design and simple chemistry yield a superior, neuroprotective HDAC6 inhibitor, Tubastatin A. J. Am. Chem. Soc. 132, 10842–10846. 10.1021/ja102758v PubMed DOI PMC
Chand D., Yamazaki Y., Ruuth K., Schönherr C., Martinsson T., Kogner P., et al. . (2013). Cell culture and Drosophila model systems define three classes of anaplastic lymphoma kinase mutations in neuroblastoma. Dis. Model. Mech. 6, 373–382. 10.1242/dmm.010348 PubMed DOI PMC
Chen V. B., Arendall W. B., Headd J. J., Keedy D. A., Immormino R. M., Kapral G. J., et al. . (2010). MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21. 10.1107/S0907444909042073 PubMed DOI PMC
Coleman J. A., Green E. M., Gouaux E. (2016). X-ray structures and mechanism of the human serotonin transporter. Nature 532, 334–339. 10.1038/nature17629 PubMed DOI PMC
DeVore N. M., Scott E. E. (2012). Structures of cytochrome P450 17A1 with prostate cancer drugs abiraterone and TOK-001. Nature 482, 116–119. 10.1038/nature10743 PubMed DOI PMC
Epstein L. F., Chen H., Emkey R., Whittington D. A. (2012). The R1275Q neuroblastoma mutant and certain ATP-competitive inhibitors stabilize alternative activation loop conformations of anaplastic lymphoma kinase. J. Biol. Chem. 287, 37447–37457. 10.1074/jbc.M112.391425 PubMed DOI PMC
Garcia J., Faca V., Jarzembowski J., Zhang Q., Park J., Hanash S. (2009). Comprehensive profiling of the cell surface proteome of Sy5Y neuroblastoma cells yields a subset of proteins associated with tumor differentiation. J. Proteome Res. 8, 3791–3796. 10.1021/pr800964v PubMed DOI
Haddad Y., Heger Z., Adam V. (2016). Guidelines for homology modeling of dopamine, norepinephrine and serotonin transporters. ACS Chem. Neurosci. 7, 1607–1613. 10.1021/acschemneuro.6b00242 PubMed DOI
Huang Q., Johnson T. W., Bailey S., Brooun A., Bunker K. D., Burke B. J., et al. . (2014). Design of potent and selective inhibitors to overcome clinical anaplastic lymphoma kinase mutations resistant to crizotinib. J. Med. Chem. 57, 1170–1187. 10.1021/jm401805h PubMed DOI
Kakuda S., Shiba T., Ishiguro M., Tagawa H., Oka S., Kajihara Y., et al. . (2004). Structural basis for acceptor substrate recognition of a human glucuronyltransferase, GlcAT-P, an enzyme critical in the biosynthesis of the carbohydrate epitope HNK-1. J. Biol. Chem. 279, 22693–22703. 10.1074/jbc.M400622200 PubMed DOI
Kinch M. S., Hoyer D., Patridge E., Plummer M. (2015). Target selection for FDA-approved medicines. Drug Discov. Today 20, 784–789. 10.1016/j.drudis.2014.11.001 PubMed DOI
Koldsø H., Christiansen A. B., Sinning S., Schiøtt B. (2013). Comparative modeling of the human monoamine transporters: similarities in substrate binding. ACS Chem. Neurosci. 4, 295–309. 10.1021/cn300148r PubMed DOI PMC
Koldsø H., Grouleff J., Schiøtt B. (2015). Insights to ligand binding to the monoamine transporters-from homology modeling to LeuBAT and dDAT. Front. Pharmacol. 6:208. 10.3389/fphar.2015.00208 PubMed DOI PMC
Krieger E., Nabuurs S. B., Vriend G. (2003). Homology modeling. Methods Biochem. Anal. 44, 509–523. 10.1007/springerreference_33987 PubMed DOI
Kundrotas P. J., Zhu Z., Janin J., Vakser I. A. (2012). Templates are available to model nearly all complexes of structurally characterized proteins. Proc. Natl. Acad. Sci. U S A 109, 9438–9441. 10.1073/pnas.1200678109 PubMed DOI PMC
Lee C. J., De Biasio A., Beglova N. (2010). Mode of interaction between beta 2GPI and lipoprotein receptors suggests mutually exclusive binding of beta 2GPI to the receptors and anionic phospholipids. Structure 18, 366–376. 10.1016/j.str.2009.12.013 PubMed DOI
Matthay K. K., George R. E., Yu A. L. (2012). Promising therapeutic targets in neuroblastoma. Clin. Cancer Res. 18, 2740–2753. 10.1158/1078-0432.CCR-11-1939 PubMed DOI PMC
Melikian H. E., McDonald J. K., Gu H., Rudnick G., Moore K. R., Blakely R. D. (1994). Human norepinephrine transporter–biosynthetic-studies using a site-directed polyclonal antibody. J. Biol. Chem. 269, 12290–12297. PubMed
Mortensen O. V., Kortagere S. (2015). Designing modulators of monoamine transporters using virtual screening techniques. Front. Pharmacol. 6:223. 10.3389/fphar.2015.00223 PubMed DOI PMC
Norregaard L., Frederiksen D., Nielsen E. O., Gether U. (1998). Delineation of an endogenous zinc-binding site in the human dopamine transporter. EMBO J. 17, 4266–4273. 10.1093/emboj/17.15.4266 PubMed DOI PMC
Osajima-Hakomori Y., Miyake I., Ohira M., Nakagawara A., Nakagawa A., Sakai R. (2005). Biological role of anaplastic lymphoma kinase in neuroblastoma. Am. J. Pathol. 167, 213–222. 10.1016/s0002-9440(10)62966-5 PubMed DOI PMC
Penmatsa A., Wang K. H., Gouaux E. (2013). X-ray structure of dopamine transporter elucidates antidepressant mechanism. Nature 503, 85–90. 10.1038/nature12533 PubMed DOI PMC
Robertson A. G. S., Banfield M. J., Allen S. J., Dando J. A., Mason G. G. F., Tyler S. J., et al. . (2001). Identification and structure of the nerve growth factor binding site on TrkA. Biochem. Biophys. Res. Comm. 282, 131–141. 10.1006/bbrc.2001.4462 PubMed DOI
Roskoski R., Jr. (2013). The preclinical profile of crizotinib for the treatment of non-small-cell lung cancer and other neoplastic disorders. Expert Opin. Drug Discov. 8, 1165–1179. 10.1517/17460441.2013.813015 PubMed DOI
Sakamoto H., Tsukaguchi T., Hiroshima S., Kodama T., Kobayashi T., Fukami T. A., et al. . (2011). CH5424802, a selective ALK inhibitor capable of blocking the resistant gatekeeper mutant. Cancer Cell 19, 679–690. 10.1016/j.ccr.2011.04.004 PubMed DOI
Sartelet H., Imbriglio T., Nyalendo C., Haddad E., Annabi B., Duval M., et al. . (2012). CD133 expression is associated with poor outcome in neuroblastoma via chemoresistance mediated by the AKT pathway. Histopathology 60, 1144–1155. 10.1111/j.1365-2559.2012.04191.x PubMed DOI
Schlessinger A., Geier E., Fan H., Irwin J. J., Shoichet B. K., Giacomini K. M., et al. . (2011). Structure-based discovery of prescription drugs that interact with the norepinephrine transporter, NET. Proc. Natl. Acad. Sci. U S A 108, 15810–15815. 10.1073/pnas.1106030108 PubMed DOI PMC
Schlitter A. M., Dorneburg C., Barth T. F. E., Wahl J., Schulte J. H., Brüderlein S., et al. . (2012). CD57 high neuroblastoma cells have aggressive attributes ex situ and an undifferentiated phenotype in patients. PLoS One 7:e42025. 10.1371/journal.pone.0042025 PubMed DOI PMC
Scott A. M., Wolchok J. D., Old L. J. (2012). Antibody therapy of cancer. Nat. Rev. Cancer 12, 278–287. 10.1038/nrc3236 PubMed DOI
Shin M. C., Zhang J., Min K. A., Lee K., Byun Y., David A. E., et al. . (2014). Cell-penetrating peptides: achievements and challenges in application for cancer treatment. J. Biomed. Mater. Res. A 102, 575–587. 10.1002/jbm.a.34859 PubMed DOI PMC
Siegel R. L., Miller K. D., Jemal A. (2016). Cancer statistics, 2016. CA Cancer J. Clin. 66, 7–30. 10.3322/caac.21332 PubMed DOI
Thiele C. J., Reynolds C. P. (2005). “Differentiation and retinoids,” in Neuroblastoma, eds Cheung N. K. V., Cohn S. L. (New York, NY: Springer; ), 243–256.
Totrov M. (2012). Loop simulations. Methods Mol. Biol. 587, 207–229. 10.1007/978-1-61779-588-6_9 PubMed DOI
Ultsch M. H., Wiesmann C., Simmons L. C., Henrich J., Yang M., Reilly D., et al. . (1999). Crystal structures of the neurotrophin-binding domain of TrkA, TrkB and TrkC. J. Mol. Biol. 290, 149–159. 10.1006/jmbi.1999.2816 PubMed DOI
Verissimo C. S., Molenaar J. J., Fitzsimons C. P., Vreugdenhil E. (2011). Neuroblastoma therapy: What is in the pipeline? Endocr. Relat. Cancer 18, R213–R231. 10.1530/ERC-11-0251 PubMed DOI
Wang T., Lamb M. L., Block M. H., Davies A. M., Han Y., Hoffmann E., et al. . (2012). Discovery of disubstituted imidazo [4,5-b] pyridines and purines as potent TrkA inhibitors. ACS Med. Chem. Lett. 3, 705–709. 10.1021/ml300074j PubMed DOI PMC
Wang K. H., Penmatsa A., Gouaux E. (2015). Neurotransmitter and psychostimulant recognition by the dopamine transporter. Nature 521, 322–327. 10.1038/nature14431 PubMed DOI PMC
Webb B., Sali A. (2014). Comparative protein structure modeling using modeller. Curr. Protoc. Bioinformatics 47, 5.6.1–5.6.32. 10.1002/0471250953.bi0506s47 PubMed DOI
Wehrman T., He X., Raab B., Dukipatti A., Blau H., Garcia K. C. (2007). Structural and mechanistic insights into nerve growth factor interactions with the TrkA and p75 receptors. Neuron 53, 25–38. 10.1016/j.neuron.2006.09.034 PubMed DOI
Wright K. E., Hjerrild K. A., Bartlett J., Douglas A. D., Jin J., Brown R. E., et al. . (2014). Structure of malaria invasion protein RH5 with erythrocyte basigin and blocking antibodies. Nature 515, 427–430. 10.1038/nature13715 PubMed DOI PMC
Yamashita A., Singh S. K., Kawate T., Jin Y., Gouaux E. (2005). Crystal structure of a bacterial homologue of Na+/Cl–dependent neurotransmitter transporters. Nature 437, 215–223. 10.1038/nature03978 PubMed DOI
LAT1 (SLC7A5) Overexpression in Negative Her2 Group of Breast Cancer: A Potential Therapy Target
Ten quick tips for homology modeling of high-resolution protein 3D structures