Trk Receptors and Neurotrophin Cross-Interactions: New Perspectives Toward Manipulating Therapeutic Side-Effects

. 2017 ; 10 () : 130. [epub] 20170503

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28515680

Some therapeutic side-effects result from simultaneous activation of homolog receptors by the same ligand. Tropomyosin receptor kinases (TrkA, TrkB and TrkC) play a major role in the development and biology of neurons through neurotrophin signaling. The wide range of cross-interactions between Trk receptors and neurotrophins vary in selectivity, affinity and function. In this study, we discuss new perspectives to the manipulation of side-effects via a better understanding of the cross-interactions at the molecular level, derived by computational methods. Available crystal structures of Trk receptors and neurotrophins are a valuable resource for exploitation via molecular mechanics (MM) and dynamics (MD). The study of the energetics and dynamics of neurotrophins or neurotrophic peptides interacting with Trk receptors will provide insight to structural regions that may be candidates for drug targeting and signaling pathway selection.

Zobrazit více v PubMed

Arimura N., Kimura T., Nakamuta S., Taya S., Funahashi Y., Hattori A., et al. . (2009). Anterograde transport of TrkB in axons is mediated by direct interaction with Slp1 and Rab27. Dev. Cell 16, 675–686. 10.1016/j.devcel.2009.03.005 PubMed DOI

Banfield M. J., Naylor R. L., Robertson A. G. S., Allen S. J., Dawbarn D., Brady R. L. (2001). Specificity in Trk receptor: neurotrophin interactions: the crystal structure of TrkB-d5 in complex with neurotrophin-4/5. Structure 9, 1191–1199. 10.2210/pdb1hcf/pdb PubMed DOI

Barker P. A. (2007). High affinity not in the vicinity? Neuron 53, 1–4. 10.1016/j.neuron.2006.12.018 PubMed DOI

Bradshaw R. A., Chalkley R. J., Biarc J., Burlingame A. L. (2013). Receptor tyrosine kinase signaling mechanisms: devolving TrkA responses with phosphoproteomics. Adv. Biol. Regul. 53, 87–96. 10.1016/j.jbior.2012.10.006 PubMed DOI PMC

Campillos M., Kuhn M., Gavin A.-C., Jensen L. J., Bork P. (2008). Drug target identification using side-effect similarity. Science 321, 263–266. 10.1126/science.1158140 PubMed DOI

Feng D., Kim T., Ozkan E., Light M., Torkin R., Teng K. K., et al. . (2010). Molecular and structural insight into proNGF engagement of p75NTR and sortilin. J. Mol. Biol. 396, 967–984. 10.1016/j.jmb.2009.12.030 PubMed DOI PMC

Gong Y., Cao P., Yu H.-J., Jiang T. (2008). Crystal structure of the neurotrophin-3 and p75(NTR) symmetrical complex. Nature 454, 789–793. 10.1038/nature07089 PubMed DOI

Greene L. A., Kaplan D. R. (1995). Early events in neurotrophin signaling via Trk and p75 receptors. Curr. Opin. Neurobiol. 5, 579–587. 10.1016/0959-4388(95)80062-x PubMed DOI

Haddad Y., Heger Z., Adam V. (2017). Targeting neuroblastoma cell surface proteins: recommendations for homology modeling of hNET, ALK, and TrkB. Front. Mol. Neurosci. 10:7. 10.3389/fnmol.2017.00007 PubMed DOI PMC

Heerssen H. M., Pazyra M. F., Segal R. A. (2004). Dynein motors transport activated Trks to promote survival of target-dependent neurons. Nat. Neurosci. 7, 596–604. 10.1038/nn1242 PubMed DOI

Jansen P., Giehl K., Nyengaard J. R., Teng K., Lioubinski O., Sjoegaard S. S., et al. . (2007). Roles for the pro-neurotrophin receptor sortilin in neuronal development, aging and brain injury. Nat. Neurosci. 10, 1449–1457. 10.1038/nn2000 PubMed DOI

Kaplan D. R., Miller F. D. (2000). Neurotrophin signal transduction in the nervous system. Curr. Opin. Neurobiol. 10, 381–391. 10.1016/s0959-4388(00)00092-1 PubMed DOI

Khawam E. A., Laurencic G., Malone D. A. (2006). Side effects of antidepressants: an overview. Cleve. Clin. J. Med. 73, 351–353, 356–361. 10.3949/ccjm.73.4.351 PubMed DOI

Kuhn M., Campillos M., Letunic I., Jensen L. J., Bork P. (2010). A side effect resource to capture phenotypic effects of drugs. Mol. Syst. Biol. 6:343. 10.1038/msb.2009.98 PubMed DOI PMC

Ponder J. W., Case D. A. (2003). Force fields for protein simulations. Adv. Protein Chem. 66, 27–85. 10.1016/s0065-3233(03)66002-x PubMed DOI

Price R. D., Milne S. A., Sharkey J., Matsuoka N. (2007). Advances in small molecules promoting neurotrophic function. Pharmacol. Ther. 115, 292–306. 10.1016/j.pharmthera.2007.03.005 PubMed DOI

Robinson R. C., Radziejewski C., Spraggon G., Greenwald J., Kostura M. R., Burtnick L. D., et al. . (1999). The structures of the neurotrophin 4 homodimer and the brain-derived neurotrophic factor/neurotrophin 4 heterodimer reveal a common Trk-binding site. Protein Sci. 8, 2589–2597. 10.1110/ps.8.12.2589 PubMed DOI PMC

Satriano C., Forte G., Magri A., Di Pietro P., Travaglia A., Pandini G., et al. . (2016). Neurotrophin-mimicking peptides at the biointerface with gold respond to copper ion stimuli. Phys. Chem. Chem. Phys. 18, 30595–30604. 10.1039/c6cp05476e PubMed DOI

Skeldal S., Sykes A. M., Glerup S., Matusica D., Palstra N., Autio H., et al. . (2012). Mapping of the interaction site between sortilin and the p75 neurotrophin receptor reveals a regulatory role for the sortilin intracellular domain in p75 neurotrophin receptor shedding and apoptosis. J. Biol. Chem. 287, 43798–43809. 10.1074/jbc.m112.374710 PubMed DOI PMC

Skjaerven L., Hollup S. M., Reuter N. (2009). Normal mode analysis for proteins. J. Mol. Struct. Theochem. 898, 42–48. 10.1016/j.theochem.2008.09.024 DOI

Stanzione F., Esposito L., Paladino A., Pedone C., Morelli G., Vitagliano L. (2010). Role of the conformational versatility of the neurotrophin N-terminal regions in their recognition by trk receptors. Biophys. J. 99, 2273–2278. 10.1016/j.bpj.2010.07.054 PubMed DOI PMC

Thoenen H., Sendtner M. (2002). Neurotrophins: from enthusiastic expectations through sobering experiences to rational therapeutic approaches. Nat. Neurosci. 5, 1046–1050. 10.1038/nn938 PubMed DOI

Travaglia A., Arena G., Fattorusso R., Isernia C., La Mendola D., Malgieri G., et al. . (2011). The inorganic perspective of nerve growth factor: interactions of Cu2+ and Zn2+ with the N-terminus fragment of nerve growth factor encompassing the recognition domain of the TrkA receptor. Chem. Eur. J. 17, 3726–3738. 10.1002/chem.201002294 PubMed DOI

Travaglia A., Pietropaolo A., Di Martino R., Nicoletti V. G., La Mendola D., Calissano P., et al. . (2015). A small linear peptide encompassing the NGF N-terminus partly mimics the biological activities of the entire neurotrophin in PC12 cells. ACS Chem. Neurosci. 6, 1379–1392. 10.1021/acschemneuro.5b00069 PubMed DOI

Tsai C. S. (2003). An Introduction to Computational Biochemistry. Hoboken, NJ: John Wiley & Sons.

Ultsch M. H., Wiesmann C., Simmons L. C., Henrich J., Yang M., Reilly D., et al. . (1999). Crystal structures of the neurotrophin-binding domain of TrkA, TrkB and TrkC. J. Mol. Biol. 290, 149–159. 10.1006/jmbi.1999.2816 PubMed DOI

Wehrman T., He X. L., Raab B., Dukipatti A., Blau H., Garcia K. C. (2007). Structural and mechanistic insights into nerve growth factor interactions with the TrkA and p75 receptors. Neuron 53, 25–38. 10.1016/j.neuron.2006.09.034 PubMed DOI

Widakowich C., De Castro G., Jr., De Azambuja E., Dinh P., Awada A. (2007). Review: side effects of approved molecular targeted therapies in solid cancers. Oncologist 12, 1443–1455. 10.1634/theoncologist.12-12-1443 PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Rotamer Dynamics: Analysis of Rotamers in Molecular Dynamics Simulations of Proteins

. 2019 Jun 04 ; 116 (11) : 2062-2072. [epub] 20190422

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...