Trk Receptors and Neurotrophin Cross-Interactions: New Perspectives Toward Manipulating Therapeutic Side-Effects
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
28515680
PubMed Central
PMC5414483
DOI
10.3389/fnmol.2017.00130
Knihovny.cz E-zdroje
- Klíčová slova
- drug side-effect, molecular dynamics, molecular mechanics, neurotrophic tyrosine kinase receptor, neurotrophin, tropomyosin receptor kinase,
- Publikační typ
- časopisecké články MeSH
Some therapeutic side-effects result from simultaneous activation of homolog receptors by the same ligand. Tropomyosin receptor kinases (TrkA, TrkB and TrkC) play a major role in the development and biology of neurons through neurotrophin signaling. The wide range of cross-interactions between Trk receptors and neurotrophins vary in selectivity, affinity and function. In this study, we discuss new perspectives to the manipulation of side-effects via a better understanding of the cross-interactions at the molecular level, derived by computational methods. Available crystal structures of Trk receptors and neurotrophins are a valuable resource for exploitation via molecular mechanics (MM) and dynamics (MD). The study of the energetics and dynamics of neurotrophins or neurotrophic peptides interacting with Trk receptors will provide insight to structural regions that may be candidates for drug targeting and signaling pathway selection.
Central European Institute of Technology Brno University of TechnologyBrno Czechia
Department of Chemistry and Biochemistry Mendel University in BrnoBrno Czechia
Zobrazit více v PubMed
Arimura N., Kimura T., Nakamuta S., Taya S., Funahashi Y., Hattori A., et al. . (2009). Anterograde transport of TrkB in axons is mediated by direct interaction with Slp1 and Rab27. Dev. Cell 16, 675–686. 10.1016/j.devcel.2009.03.005 PubMed DOI
Banfield M. J., Naylor R. L., Robertson A. G. S., Allen S. J., Dawbarn D., Brady R. L. (2001). Specificity in Trk receptor: neurotrophin interactions: the crystal structure of TrkB-d5 in complex with neurotrophin-4/5. Structure 9, 1191–1199. 10.2210/pdb1hcf/pdb PubMed DOI
Barker P. A. (2007). High affinity not in the vicinity? Neuron 53, 1–4. 10.1016/j.neuron.2006.12.018 PubMed DOI
Bradshaw R. A., Chalkley R. J., Biarc J., Burlingame A. L. (2013). Receptor tyrosine kinase signaling mechanisms: devolving TrkA responses with phosphoproteomics. Adv. Biol. Regul. 53, 87–96. 10.1016/j.jbior.2012.10.006 PubMed DOI PMC
Campillos M., Kuhn M., Gavin A.-C., Jensen L. J., Bork P. (2008). Drug target identification using side-effect similarity. Science 321, 263–266. 10.1126/science.1158140 PubMed DOI
Feng D., Kim T., Ozkan E., Light M., Torkin R., Teng K. K., et al. . (2010). Molecular and structural insight into proNGF engagement of p75NTR and sortilin. J. Mol. Biol. 396, 967–984. 10.1016/j.jmb.2009.12.030 PubMed DOI PMC
Gong Y., Cao P., Yu H.-J., Jiang T. (2008). Crystal structure of the neurotrophin-3 and p75(NTR) symmetrical complex. Nature 454, 789–793. 10.1038/nature07089 PubMed DOI
Greene L. A., Kaplan D. R. (1995). Early events in neurotrophin signaling via Trk and p75 receptors. Curr. Opin. Neurobiol. 5, 579–587. 10.1016/0959-4388(95)80062-x PubMed DOI
Haddad Y., Heger Z., Adam V. (2017). Targeting neuroblastoma cell surface proteins: recommendations for homology modeling of hNET, ALK, and TrkB. Front. Mol. Neurosci. 10:7. 10.3389/fnmol.2017.00007 PubMed DOI PMC
Heerssen H. M., Pazyra M. F., Segal R. A. (2004). Dynein motors transport activated Trks to promote survival of target-dependent neurons. Nat. Neurosci. 7, 596–604. 10.1038/nn1242 PubMed DOI
Jansen P., Giehl K., Nyengaard J. R., Teng K., Lioubinski O., Sjoegaard S. S., et al. . (2007). Roles for the pro-neurotrophin receptor sortilin in neuronal development, aging and brain injury. Nat. Neurosci. 10, 1449–1457. 10.1038/nn2000 PubMed DOI
Kaplan D. R., Miller F. D. (2000). Neurotrophin signal transduction in the nervous system. Curr. Opin. Neurobiol. 10, 381–391. 10.1016/s0959-4388(00)00092-1 PubMed DOI
Khawam E. A., Laurencic G., Malone D. A. (2006). Side effects of antidepressants: an overview. Cleve. Clin. J. Med. 73, 351–353, 356–361. 10.3949/ccjm.73.4.351 PubMed DOI
Kuhn M., Campillos M., Letunic I., Jensen L. J., Bork P. (2010). A side effect resource to capture phenotypic effects of drugs. Mol. Syst. Biol. 6:343. 10.1038/msb.2009.98 PubMed DOI PMC
Ponder J. W., Case D. A. (2003). Force fields for protein simulations. Adv. Protein Chem. 66, 27–85. 10.1016/s0065-3233(03)66002-x PubMed DOI
Price R. D., Milne S. A., Sharkey J., Matsuoka N. (2007). Advances in small molecules promoting neurotrophic function. Pharmacol. Ther. 115, 292–306. 10.1016/j.pharmthera.2007.03.005 PubMed DOI
Robinson R. C., Radziejewski C., Spraggon G., Greenwald J., Kostura M. R., Burtnick L. D., et al. . (1999). The structures of the neurotrophin 4 homodimer and the brain-derived neurotrophic factor/neurotrophin 4 heterodimer reveal a common Trk-binding site. Protein Sci. 8, 2589–2597. 10.1110/ps.8.12.2589 PubMed DOI PMC
Satriano C., Forte G., Magri A., Di Pietro P., Travaglia A., Pandini G., et al. . (2016). Neurotrophin-mimicking peptides at the biointerface with gold respond to copper ion stimuli. Phys. Chem. Chem. Phys. 18, 30595–30604. 10.1039/c6cp05476e PubMed DOI
Skeldal S., Sykes A. M., Glerup S., Matusica D., Palstra N., Autio H., et al. . (2012). Mapping of the interaction site between sortilin and the p75 neurotrophin receptor reveals a regulatory role for the sortilin intracellular domain in p75 neurotrophin receptor shedding and apoptosis. J. Biol. Chem. 287, 43798–43809. 10.1074/jbc.m112.374710 PubMed DOI PMC
Skjaerven L., Hollup S. M., Reuter N. (2009). Normal mode analysis for proteins. J. Mol. Struct. Theochem. 898, 42–48. 10.1016/j.theochem.2008.09.024 DOI
Stanzione F., Esposito L., Paladino A., Pedone C., Morelli G., Vitagliano L. (2010). Role of the conformational versatility of the neurotrophin N-terminal regions in their recognition by trk receptors. Biophys. J. 99, 2273–2278. 10.1016/j.bpj.2010.07.054 PubMed DOI PMC
Thoenen H., Sendtner M. (2002). Neurotrophins: from enthusiastic expectations through sobering experiences to rational therapeutic approaches. Nat. Neurosci. 5, 1046–1050. 10.1038/nn938 PubMed DOI
Travaglia A., Arena G., Fattorusso R., Isernia C., La Mendola D., Malgieri G., et al. . (2011). The inorganic perspective of nerve growth factor: interactions of Cu2+ and Zn2+ with the N-terminus fragment of nerve growth factor encompassing the recognition domain of the TrkA receptor. Chem. Eur. J. 17, 3726–3738. 10.1002/chem.201002294 PubMed DOI
Travaglia A., Pietropaolo A., Di Martino R., Nicoletti V. G., La Mendola D., Calissano P., et al. . (2015). A small linear peptide encompassing the NGF N-terminus partly mimics the biological activities of the entire neurotrophin in PC12 cells. ACS Chem. Neurosci. 6, 1379–1392. 10.1021/acschemneuro.5b00069 PubMed DOI
Tsai C. S. (2003). An Introduction to Computational Biochemistry. Hoboken, NJ: John Wiley & Sons.
Ultsch M. H., Wiesmann C., Simmons L. C., Henrich J., Yang M., Reilly D., et al. . (1999). Crystal structures of the neurotrophin-binding domain of TrkA, TrkB and TrkC. J. Mol. Biol. 290, 149–159. 10.1006/jmbi.1999.2816 PubMed DOI
Wehrman T., He X. L., Raab B., Dukipatti A., Blau H., Garcia K. C. (2007). Structural and mechanistic insights into nerve growth factor interactions with the TrkA and p75 receptors. Neuron 53, 25–38. 10.1016/j.neuron.2006.09.034 PubMed DOI
Widakowich C., De Castro G., Jr., De Azambuja E., Dinh P., Awada A. (2007). Review: side effects of approved molecular targeted therapies in solid cancers. Oncologist 12, 1443–1455. 10.1634/theoncologist.12-12-1443 PubMed DOI
Rotamer Dynamics: Analysis of Rotamers in Molecular Dynamics Simulations of Proteins