Effect of Hyperhomocysteinemia on Redox Balance and Redox Defence Enzymes in Ischemia-Reperfusion Injury and/or After Ischemic Preconditioning in Rats
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
28210876
PubMed Central
PMC11482144
DOI
10.1007/s10571-017-0473-5
PII: 10.1007/s10571-017-0473-5
Knihovny.cz E-zdroje
- Klíčová slova
- Antioxidant enzymes, Hyperhomocysteinemia, Ischemia–reperfusion injury, Ischemic tolerance, Reactive oxygen species,
- MeSH
- hyperhomocysteinemie komplikace enzymologie patologie MeSH
- krysa rodu Rattus MeSH
- oxidace-redukce MeSH
- oxidační stres fyziologie MeSH
- peroxidace lipidů fyziologie MeSH
- potkani Wistar MeSH
- přivykání k ischémii trendy MeSH
- reaktivní formy kyslíku metabolismus MeSH
- reperfuzní poškození enzymologie patologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- reaktivní formy kyslíku MeSH
Increased level of homocysteine (hHcy) in plasma is an accompanying phenomenon of many diseases, including a brain stroke. This study determines whether hyperhomocysteinemia (which is a risk factor of brain ischemia) itself or in combination with ischemic preconditioning affects the ischemia-induced neurodegenerative changes, generation of reactive oxygen species (ROS), lipoperoxidation, protein oxidation, and activity of antioxidant enzymes in the rat brain cortex. The hHcy was induced by subcutaneous administration of homocysteine (0.45 μmol/g body weight) twice a day in 8 h intervals for 14 days. Rats were preconditioned by 5 min ischemia. Two days later, 15 min of global forebrain ischemia was induced by four vessel's occlusion. The study demonstrates that in the cerebral cortex, hHcy alone induces progressive neuronal cell death and morphological changes. Neuronal damage was associated with the pro-oxidative effect of hHcy, which leads to increased ROS formation, peroxidation of lipids and oxidative alterations of cortical proteins. Ischemic reperfusion injury activates degeneration processes and de-regulates redox balance which is aggravated under hHcy conditions and leads to the augmented lipoperoxidation and protein oxidation. If combined with hHcy, ischemic preconditioning could preserve the neuronal tissue from lethal ischemic effect and initiates suppression of lipoperoxidation, protein oxidation, and alterations of redox enzymes with the most significant effect observed after prolonged reperfusion. Increased prevalence of hyperhomocysteinemia in the Western population and crucial role of elevated Hcy level in the pathogenesis of neuronal disorders makes this amino acid as an interesting target for future research. Understanding the multiple etiological mechanisms and recognition of the co-morbid risk factors that lead to the ischemic/reperfusion injury and ischemic tolerance is therefore important for developing therapeutic strategies in human brain stroke associated with the elevated level of Hcy.
Zobrazit více v PubMed
Aparna P, Betigeri AM, Pasupathi P (2010) Homocysteine and oxidative stress markers and inflammation in patients with coronary artery disease. Int J Biol Med Res 1:125–129
Bigdeli MR (2009) Preconditioning with prolonged normobaric hyperoxia induces ischemic tolerance partly by upregulation of antioxidant enzymes in rat brain tissue. Brain Res 1260:47–54 PubMed
Bubici C, Papa S, Pham CG, Zazzeroni F, Franzoso G (2006) The NF-kappaB-mediated control of ROS and JNK signaling. Histol Histopathol 21:69–80 PubMed
Burda J, Danielisová V, Némethová M, Gottlieb M, Matiasová M, Domoráková I, Mechírová E, Feriková M, Salinas M, Burda R (2006) Delayed postconditioning initiates additive mechanism necessary for survival of selectively vulnerable neurons after transient ischemia in rat brain. Cell Mol Neurobiol 26:1141–1151 PubMed PMC
Chondrogianni N, Petropoulos I, Grimm S, Georgila K, Catalgol B, Friguet B, Grune T, Gonos ES (2014) Protein damage, repair and proteolysis. Mol Aspects Med 35:1–71 PubMed
da Cunha MJ, da Cunha AA, Ferreira AG, Machado FR, Schmitz F, Lima DD, Delwing D, Mussulini BH, Wofchuk S, Netto CA, Wyse AT (2012) Physical exercise reverses glutamate uptake and oxidative stress effects of chronic homocysteine administration in the rat. Int J Dev Neurosci 30:69–74 PubMed
Danielisova V, Gottlieb M, Bonova P, Nemethova M, Burda J (2014) Bradykinin postconditioning ameliorates focal cerebral ischemia in the rat. Neurochem Int 72:22–29 PubMed
Danielisová V, Némethová M, Gottlieb M, Burda J (2005) Changes of endogenous antioxidant enzymes during ischemic tolerance acquisition. Neurochem Res 30:559–565 PubMed
Dayal S, Lentz SR (2005) ADMA and hyperhomocysteinemia. Vasc Med 10:S27–S33 PubMed
Ding ZM, Wu B, Zhang WQ, Lu XJ, Lin YC, Geng YJ, Miao YF (2012) Neuroprotective effects of ischemic preconditioning and postconditioning on global brain ischemia in rats through the same effect on inhibition of apoptosis. Int J Mol Sci 13:6089–6101 PubMed PMC
Dirnagl U, Becker K, Meisel A (2009) Preconditioning and tolerance against cerebral ischaemia: from experimental strategies to clinical use. Lancet Neurol 8:398–412 PubMed PMC
Dodd PR, Hardy JA, Oakley AE (1981) A rapid method for preparing synaptosomes: comparison with alternative procedures. Brain Res 226:107–118 PubMed
Drgová A, Likavcanová K, Dobrota D (2004) Changes of phospholipid composition and superoxide dismutase activity during global brain ischemia and reperfusion in rats. Gen Physiol Biophys 23:337–346 PubMed
Dringen R (2000) Metabolism and functions of glutathione in brain. Prog Neurobiol 62:649–671 PubMed
Folbergrová J, Ješina P, Nůsková H, Houštěk J (2012) Antioxidant enzymes in cerebral cortex of immature rats following experimentally-induced seizures: upregulation of mitochondrial MnSOD (SOD2). Int J Dev Neurosci 31:123–130 PubMed
Ganguly P, Alam SF (2015) Role of homocysteine in the development of cardiovascular disease. Nutr J 14:6. doi:10.1186/1475-2891-14-6 PubMed PMC
Gidday JM (2006) Cerebral preconditioning and ischaemic tolerance. Nat Rev Neurosci 7:437–448 PubMed
Gidday JM (2015) Extending injury- and disease-resistant CNS phenotypes by repetitive epigenetic conditioning. Front Neurol 6:42. doi:10.3389/fneur.2015.00042 PubMed PMC
Hermann W, Obeid R (2011) Homocysteine: a biomarker in neurodegenerative diseases. Clin Chem Lab Med 49:435–441 PubMed
Jakubowski H (2010) The role of paraoxonase 1 in the detoxification of homocysteine thiolactone. Adv Exp Med Biol 660:113–127 PubMed
Jakubowski H (2013) An overview of homocysteine metabolism. Homocysteine in protein structure/function and human diseases. Springer, Wien, pp 7–18
Johansson LH, Borg LAH (1988) A spectrophotometric method for determination of catalase activity in small tissue samples. Anal Biochem 174:331–336 PubMed
Kalani A, Kamat PK, Givvimani S, Brown K, Metreveli N, Tyagi SC, Tyagi N (2014) Nutri-epigenetics ameliorates blood-brain barrier damage and neurodegeneration in hyperhomocysteinemia: role of folic acid. J Mol Neurosci 52:202–215 PubMed PMC
Kamat PK, Kalani A, Givvimani S, Sathnur PB, Tyagi SC, Tyagi N (2013) Hydrogen sulfide attenuates neurodegeneration and neurovascular dysfunction induced by intracerebral-administered homocysteine in mice. Neuroscience 252:302–319 PubMed PMC
Kim SJ, Lee BH, Kim YM, Kim GH, Yoo HW (2013) Congenital MTHFR deficiency causing early-onset cerebral stroke in a case homozygous for MTHFR thermolabile variant. Metab Brain Dis 28:519–522 PubMed
Kolling J, Scherer EB, da Cunha AA, da Cunha MJ, Wyse AT (2011) Homocysteine induces oxidative-nitrative stress in heart of rats: prevention by folic acid. Cardiovasc Toxicol 11:67–73 PubMed
Kovalska M, Kovalska L, Pavlikova M, Janickova M, Mikuskova K, Adamkov M, Kaplan P, Tatarkova Z, Lehotsky J (2012) Intracellular signaling MAPK pathway after cerebral ischemia-reperfusion injury. Neurochem Res 37:1568–1577 PubMed
Kovalska M, Kovalska L, Mikuskova K, Adamkov M, Tatarkova Z, Lehotsky J (2014) p-ERK involvement in the neuroprotection exerted by ischemic preconditioning in rat hippocampus subjected to four vessel occlusion. J Physiol Pharmacol 65:767–776 PubMed
Kovalska M, Kovalska L, Tothova B, Mahmood S, Adamkov M, Lehotsky J (2015) Combination of hyperhomocysteinemia and ischemic tolerance in experimental model of global ischemia in rats. J Physiol Pharmacol 66:887–897 PubMed
Kwon HM, Lee YS, Bae HJ, Kang DW (2014) Homocysteine as a predictor of early neurological deterioration in acute ischemic stroke. Stroke 45:871–873 PubMed
Lee WC, Wong HY, Chai YY, Shi CW, Amino N, Kikuchi S, Huang SH (2012) Lipid peroxidation dysregulation in ischemic stroke: plasma 4-HNE as a potential biomarker? Biochem Biophys Res Commun 425:842–847 PubMed
Lehotsky J, Burda J, Danielisova V, Gottlieb M, Kaplan P, Saniova B (2009) Ischemic tolerance: the mechanisms of neuroprotective strategy. Anat Rec 292:2002–2012 PubMed
Lehotsky J, Petras M, Kovalska M, Tothova B, Drgova A, Kaplan P (2015) Mechanisms involved in the ischemic tolerance in brain: effect of the homocysteine. Cell Mol Neurobiol 35:7–15 PubMed PMC
Lehotský J, Murín R, Strapková A, Uríková A, Tatarková Z, Kaplán P (2004) Time course of ischemia/reperfusion-induced oxidative modification of neural proteins in rat forebrain. Gen Physiol Biophys 23:401–415 PubMed
Lehotský J, Racay P, Pavlíková M, Tatarková Z, Urban P, Chomová M, Kovalská M, Kaplán P (2009) Cross-talk of intracellular calcium stores in the response to neuronal ischemia and ischemic tolerance. Gen Physiol Biophys 28:104–113 PubMed
Lehotský J, Tóthová B, Kovalská M, Dobrota D, Beňová A, Kalenská D, Kaplán P (2016) Role of homocysteine in the ischemic stroke and development of ischemic tolerance. Front Neurosci 10:538 PubMed PMC
Li J, Liu W, Ding S, Xu W, Guan Y, Zhang JH, Sun X (2008) Hyperbaric oxygen preconditioning induces tolerance against brain ischemia–reperfusion injury by upregulation of antioxidant enzymes in rats. Brain Res 1210:223–229 PubMed
Longoni A, Kolling J, dos Santos TM, dos Santos JP, da Silva JS, Pettenuzzo L, Gonçalves CA, de Assis AM, Quincozes-Santos A, Wyse AT (2016) 1,25-Dihydroxyvitamin D3 exerts neuroprotective effects in an ex vivo model of mild hyperhomocysteinemia. Int J Dev Neurosci 48:71–79 PubMed
Loureiro SO, Romão L, Alves T, Fonseca A, Heimfarth L, Moura Neto V, Wyse AT, Pessoa-Pureur R (2010) Homocysteine induces cytoskeletal remodeling and production of reactive oxygen species in cultured cortical astrocytes. Brain Res 1355:151–164 PubMed
Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with folin-phenol reagents. J Biol Chem 193:265–275 PubMed
Machado FR, Ferreira AG, da Cunha AA, Tagliari B, Mussulini BH, Wofchuk S, Wyse AT (2011) Homocysteine alters glutamate uptake and Na + , K + -ATPase activity and oxidative status in rats hippocampus: protection by vitamin C. Metab Brain Dis 26:61–67 PubMed
Matté C, Mackedanz V, Stefanello FM, Scherer EB, Andreazza AC, Zanotto C, Moro AM, Garcia SC, Gonçalves CA, Erdtmann B, Salvador M, Wyse AT (2009) Chronic hyperhomocysteinemia alters antioxidant defenses and increases DNA damage in brain and blood of rats: protective effect of folic acid. Neurochem Int 54:7–13 PubMed
Matté C, Mussulini BH, dos Santos TM, Soares FM, Simão F, Matté A, de Oliveira DL, Salbego CG, Wofchuk ST, Wyse AT (2010) Hyperhomocysteinemia reduces glutamate uptake in parietal cortex of rats. Int J Dev Neurosci 28:183–187 PubMed
Mechírová E, Danielisová V, Domoráková I, Danková M, Stebnický M, Mičková H, Burda J (2014) Bradykinin preconditioning affects the number of degenerated neurons and the level of antioxidant enzymes in spinal cord ischemia in rabbits. Acta Histochem 116:252–257 PubMed
Mudd SH, Levy HL, Skovby F (2001) Disorders of transsulfuration. In: Scriver CL, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular basis of inherited disease. McGraw-Hill, New York, pp 1279–1327
Murín R, Drgová A, Kaplán P, Dobrota D, Lehotský J (2001) Ischemia/Reperfusion-induced oxidative stress causes structural changes of brain membrane proteins and lipids. Gen Physiol Biophys 20:431–438 PubMed
Nagotani ST, Hayashi T, Sato K, Zhang W, Deguchi K, Nagano I, Shoji M, Abe K (2005) Reduction of cerebral infarction in stroke-prone spontaneously hypertensive rats by statins associated with amelioration of oxidative stress. Stroke 36:670–672 PubMed
Nemethova M, Danielisova V, Gottlieb M, Burda J (2008) Post-conditioning exacerbates the MnSOD immune-reactivity after experimental cerebral global ischemia and reperfusion in the rat brain hippocampus. Cell Biol Int 32:128–135 PubMed
Obrenovitch TP (2008) Molecular physiology of preconditioning-induced brain tolerance to ischemia. Physiol Rev 88:211–247 PubMed
Okun E, Arumugam TV, Tang S, Gleichmann M, Albeck M, Sredni B, Mattson MP (2007) The organotellurium compound ammonium trichloro(dioxoethylene-0,00) tellurate enhances neuronal survival and improves functional outcome in an ischemic stroke model in mice. J Neurochem 102:1232–1241 PubMed
Ozden O, Park SH, Kim HS, Jiang H, Coleman MC, Spitz DR, Gius D (2011) Acetylation of MnSOD directs enzymatic activity responding to cellular nutrient status or oxidative stress. Aging (Albany NY) 3:102–107 PubMed PMC
Park SM, Park CW, Lee TK, Cho JH, Park JH, Lee JC, Chen BH, Shin BN, Ahn JH, Tae HJ, Shin MC, Ohk TG, Cho JH, Won MH, Choi SY, Kim IH (2016) Effect of ischemic preconditioning on antioxidant status in the gerbil hippocampal CA1 region after transient forebrain ischemia. Neural Regen Res 11:1081–1089 PubMed PMC
Pavlikova M, Kovalska M, Tatarkova Z, Sivonova-Kmetova M, Kaplan P, Lehotsky J (2011) Response of secretory pathways Ca(2 +) ATPase gene expression to hyperhomocysteinemia and/or ischemic preconditioning in rat cerebral cortex and hippocampus. Gen Physiol Biophys 30:S61–S69. doi:10.4149/gpb_2011_SI1_61 PubMed
Pavlíková M, Tatarková Z, Sivonová M, Kaplan P, Krizanová O, Lehotský J (2009) Alterations induced by ischemic preconditioning on secretory pathways Ca2 + -ATPase (SPCA) gene expression and oxidative damage after global cerebral ischemia/reperfusion in rats. Cell Mol Neurobiol 29:909–916 PubMed PMC
Perry JJ, Shin DS, Getzoff ED, Tainer JA (2010) The structural biochemistry of the superoxide dismutases. Biochim Biophys Acta 1804:245–262 PubMed PMC
Petras M, Tatarkova Z, Kovalska M, Mokra D, Dobrota D, Lehotsky J, Drgova A (2014) Hyperhomocysteinemia as a risk factor for the neuronal system disorders. J Physiol Pharmacol 65:15–23 PubMed
Poddar R, Paul S (2009) Homocysteine-NMDA receptor-mediated activation of extracellular signal-regulated kinase leads to neuronal cell death. J Neurochem 110:1095–1106 PubMed PMC
Poddar R, Paul S (2013) Novel crosstalk between ERK MAPK and p38 MAPK leads to homocysteine-NMDA receptor-mediated neuronal cell death. J Neurochem 124:558–570 PubMed PMC
Refsum H, Ueland PM (1998) Recent data are not in conflict with homocysteine as a cardiovascular risk factor. Curr Opin Lipidol 9:533–539 PubMed
Ruetzler CA, Furuya K, Takeda H, Hallenbeck JM (2001) Brain vessels normally undergo cyclic activation and inactivation: evidence from tumor necrosis factor-alpha, heme oxygenase-1, and manganese superoxide dismutase immunostaining of vessels and perivascular brain cells. J Cereb Blood Flow Metab 21:244–252 PubMed
Scherer EB, da Cunha AA, Kolling J, da Cunha MJ, Schmitz F, Sitta A, Lima DD, Delwing D, Vargas CR, Wyse AT (2011) Development of an animal model for chronic mild hyperhomocysteinemia and its response to oxidative damage. Int J Dev Neurosci 29:693–699 PubMed
Sharma P, Senthilkumar RD, Brahmachari V, Sundaramoorthy E, Mahajan A, Sharma A, Sengupta S (2006) Mining literature for a comprehensive pathway analysis: a case study for retrieval of homocysteine related genes for genetic and epigenetic studies. Lipids Health Dis 5:1 PubMed PMC
Shi S, Yang W, Tu X, Chen C, Wang C (2013) Ischemic preconditioning reduces ischemic brain injury by suppressing nuclear factor kappa B expression and neuronal apoptosis. Neural Regen Res 8:633–638 PubMed PMC
Shirakura T, Han F, Shiota N, Moriguchi S, Kasahara J, Sato T, Shirasaki Y, Fukunaga K (2005) Inhibition of nitric oxide production and protein tyrosine nitration contribute to neuroprotection by a novel calmodulin antagonist, DY-9760e, in the rat microsphere embolism. Biol Pharm Bull 28:1658–1661 PubMed
Škovierová H, Mahmood S, Blahovcová E, Hatok J, Lehotský J, Murín R (2015) Effect of homocysteine on survival of human glial cells. Physiol Res 64:747–754 PubMed
Škovierová H, Vidomanová E, Mahmood S, Sopková J, Drgová A, Červeňová T, Halašová E, Lehotský J (2016) The molecular and cellular effect of homocysteine metabolism imbalance on human health. Int J Mol Sci 17:E1733 PubMed PMC
Steele ML, Fuller S, Patel M, Kersaitis C, Ooi L, Münch G (2013) Effect of Nrf2 activators on release of glutathione, cysteinylglycine and homocysteine by human U373 astroglial cells. Redox Biol 1:441–445 PubMed PMC
Streck EL, Matte C, Vieira PS, Rombaldi F, Wannmacher CMD, Wajner M, Wyse ATS (2002) Reduction of Na+ , K+ -ATPase activity in hippocampus of rats subjected to chemically induced hyperhomocysteinemia. Neurochem Res 27:1585–1590 PubMed
Sui RB, Zhang L (2011) Electroacupuncture at the Wangu (GB 12) acupoint suppresses expression of inflammatory factors in the hippocampus and frontal lobe of rats with post-stroke depression. Neural Regen Res 6:2839–2844
Tatarkova Z, Engler I, Calkovska A, Mokra D, Drgova A, Kuka S, Racay P, Lehotsky J, Dobrota D, Kaplan P (2012) Effect of normobaric oxygen treatment on oxidative stress and enzyme activities in guinea pig heart. Gen Physiol Biophys 31:179–184 PubMed
Wu X, Ding J, Ge AY, Liu FF, Wang X, Fan W (2013) Acute phase homocysteine related to severity and outcome of atherothrombotic stroke. Eur J Intern Med 24:362–367 PubMed
Yabuki Y, Fukunaga K (2013) Oral administration of glutathione improves memory deficits following transient brain ischemia by reducing brain oxidative stress. Neuroscience 250:394–407 PubMed
Yemisci M, Gursoy-Ozdemir Y, Vural A, Can A, Topalkara K, Dalkara T (2009) Pericyte contraction induced by oxidative nitrative stress impairs capillary reflow despite successful opening of an occluded cerebral artery. Nat Med 15:1031–1037 PubMed
Yin J, Tu C, Zhao J, Ou D, Chen G, Liu Y, Xiao X (2013) Exogenous hydrogen sulfide protects against global cerebral ischemia/reperfusion injury via its anti-oxidative, anti-inflammatory and anti-apoptotic effects in rats. Brain Res 1491:188–196 PubMed
Zhang QG, Wang RM, Han D, Yang LC, Li J, Brann DW (2009) Preconditioning neuroprotection in global cerebral ischemia involves NMDA receptor-mediated ERK-JNK3 crosstalk. Neurosci Res 63:205–212 PubMed PMC
Zhao L, Liu X, Liang J, Han S, Wang Y, Yin Y, Luo Y, Li J (2013) Phosphorylation of p38 MAPK mediates hypoxic preconditioning-induced neuroprotection against cerebral ischemic injury via mitochondria translocation of Bcl-xL in mice. Brain Res 1503:78–88 PubMed