Immobilization of Irpex lacteus to liquid-core alginate beads and their application to degradation of pollutants
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
28213748
DOI
10.1007/s12223-017-0504-0
PII: 10.1007/s12223-017-0504-0
Knihovny.cz E-zdroje
- MeSH
- algináty chemie MeSH
- barvicí látky metabolismus MeSH
- biodegradace MeSH
- chemické látky znečišťující vodu metabolismus MeSH
- imobilizované buňky chemie metabolismus MeSH
- kyselina glukuronová chemie MeSH
- kyseliny hexuronové chemie MeSH
- mycelium chemie růst a vývoj metabolismus MeSH
- Polyporales chemie růst a vývoj metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- algináty MeSH
- barvicí látky MeSH
- chemické látky znečišťující vodu MeSH
- kyselina glukuronová MeSH
- kyseliny hexuronové MeSH
White rot fungi (WRF) are applicable to biodegradation of recalcitrant pollutants. However, excessive biomass growth typical for WRF cultivation can hinder their large scale applications. Therefore, immobilization of Irpex lacteus to liquid-core alginate beads restricting excessive mycelium growth and simultaneously keeping high degradation rate of pollutants was tested. Effective diffusivities of dyes to the beads varied from (2.98 ± 0.69) × 10-10 to (10.27 ± 2.60) × 10-10 m2/s. Remazol Brilliant Blue R (RBBR), Reactive Orange 16 (RO16), and Naphthol Blue Black (NBB) were used as model dyes. The immobilized fungus decolorized model dyes when applied both in microwell plates and in fluidized bed reactors. Using the microwell plates, the apparent reaction rate constants ranged from (2.06 ± 0.11) × 10-2 to (11.06 ± 0.27) × 10-2 1/h, depending on the dye used and its initial concentration. High initial concentrations negatively affected the dye decolorization rate. No fungal growth outside the beads was observed in fluidized bed reactors and thus no operational problems linked to an excessive biomass growth occurred. When RBBR was decolorized in subsequent batches in the fluidized bed reactor, the apparent reaction rate constant increased from (11.63 ± 0.35) × 10-2 to (29.26 ± 7.19) × 10-2 1/h.
Zobrazit více v PubMed
Biotechnol Adv. 2003 Dec;22(1-2):161-87 PubMed
Hum Exp Toxicol. 1999 Sep;18(9):552-9 PubMed
J Environ Manage. 2009 Jun;90(8):2313-42 PubMed
Biotechnol Bioeng. 1991 Feb 20;37(4):386-8 PubMed
Mutat Res. 2007 Jan 10;626(1-2):53-60 PubMed
J Biotechnol. 2003 Feb 27;101(1):49-56 PubMed
Biotechnol Bioeng. 1984 Jan;26(1):53-8 PubMed
J Biosci Bioeng. 2004;97(2):111-8 PubMed
Water Res. 2013 Dec 1;47(19):7143-8 PubMed
Bioresour Technol. 2001 May;77(3):247-55 PubMed
Chemosphere. 2005 Nov;61(7):956-64 PubMed
Chemosphere. 2007 Oct;69(5):795-802 PubMed
J Control Release. 1999 Mar 8;58(1):21-8 PubMed
Biotechnol Bioeng. 2001 Nov 5;75(3):313-21 PubMed
Biotechnol Bioeng. 1988 Sep 20;32(7):891-6 PubMed
Prog Polym Sci. 2012 Jan;37(1):106-126 PubMed
Bioresour Technol. 2007 Aug;98(11):2109-15 PubMed
Appl Microbiol Biotechnol. 2001 Oct;57(1-2):20-33 PubMed
Biotechnol Bioeng. 1986 Jun;28(6):829-35 PubMed
Enzyme Microb Technol. 2000 Mar 1;26(5-6):381-387 PubMed
J Environ Manage. 2007 Apr;83(2):171-80 PubMed
Mutat Res. 2004 Jul 11;561(1-2):35-44 PubMed
Toxicol Sci. 2001 May;61(1):92-9 PubMed