Immobilization of Irpex lacteus to liquid-core alginate beads and their application to degradation of pollutants

. 2017 Jul ; 62 (4) : 335-342. [epub] 20170217

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28213748
Odkazy

PubMed 28213748
DOI 10.1007/s12223-017-0504-0
PII: 10.1007/s12223-017-0504-0
Knihovny.cz E-zdroje

White rot fungi (WRF) are applicable to biodegradation of recalcitrant pollutants. However, excessive biomass growth typical for WRF cultivation can hinder their large scale applications. Therefore, immobilization of Irpex lacteus to liquid-core alginate beads restricting excessive mycelium growth and simultaneously keeping high degradation rate of pollutants was tested. Effective diffusivities of dyes to the beads varied from (2.98 ± 0.69) × 10-10 to (10.27 ± 2.60) × 10-10 m2/s. Remazol Brilliant Blue R (RBBR), Reactive Orange 16 (RO16), and Naphthol Blue Black (NBB) were used as model dyes. The immobilized fungus decolorized model dyes when applied both in microwell plates and in fluidized bed reactors. Using the microwell plates, the apparent reaction rate constants ranged from (2.06 ± 0.11) × 10-2 to (11.06 ± 0.27) × 10-2 1/h, depending on the dye used and its initial concentration. High initial concentrations negatively affected the dye decolorization rate. No fungal growth outside the beads was observed in fluidized bed reactors and thus no operational problems linked to an excessive biomass growth occurred. When RBBR was decolorized in subsequent batches in the fluidized bed reactor, the apparent reaction rate constant increased from (11.63 ± 0.35) × 10-2 to (29.26 ± 7.19) × 10-2 1/h.

Zobrazit více v PubMed

Biotechnol Adv. 2003 Dec;22(1-2):161-87 PubMed

Hum Exp Toxicol. 1999 Sep;18(9):552-9 PubMed

J Environ Manage. 2009 Jun;90(8):2313-42 PubMed

Biotechnol Bioeng. 1991 Feb 20;37(4):386-8 PubMed

Mutat Res. 2007 Jan 10;626(1-2):53-60 PubMed

J Biotechnol. 2003 Feb 27;101(1):49-56 PubMed

Biotechnol Bioeng. 1984 Jan;26(1):53-8 PubMed

J Biosci Bioeng. 2004;97(2):111-8 PubMed

Water Res. 2013 Dec 1;47(19):7143-8 PubMed

Bioresour Technol. 2001 May;77(3):247-55 PubMed

Chemosphere. 2005 Nov;61(7):956-64 PubMed

Chemosphere. 2007 Oct;69(5):795-802 PubMed

J Control Release. 1999 Mar 8;58(1):21-8 PubMed

Biotechnol Bioeng. 2001 Nov 5;75(3):313-21 PubMed

Biotechnol Bioeng. 1988 Sep 20;32(7):891-6 PubMed

Prog Polym Sci. 2012 Jan;37(1):106-126 PubMed

Bioresour Technol. 2007 Aug;98(11):2109-15 PubMed

Appl Microbiol Biotechnol. 2001 Oct;57(1-2):20-33 PubMed

Biotechnol Bioeng. 1986 Jun;28(6):829-35 PubMed

Enzyme Microb Technol. 2000 Mar 1;26(5-6):381-387 PubMed

J Environ Manage. 2007 Apr;83(2):171-80 PubMed

Mutat Res. 2004 Jul 11;561(1-2):35-44 PubMed

Toxicol Sci. 2001 May;61(1):92-9 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...