Modeling the diversity of spontaneous and agonist-induced electrical activity in anterior pituitary corticotrophs
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28228586
PubMed Central
PMC5491710
DOI
10.1152/jn.00948.2016
PII: jn.00948.2016
Knihovny.cz E-zdroje
- Klíčová slova
- action potentials, corticotrophs, corticotropin-releasing hormone, ion channels, vasopressin,
- MeSH
- akční potenciály * MeSH
- arginin vasopresin metabolismus MeSH
- hormon uvolňující kortikotropin metabolismus MeSH
- iontové kanály metabolismus MeSH
- kortikotropní buňky metabolismus fyziologie MeSH
- kultivované buňky MeSH
- modely neurologické * MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- arginin vasopresin MeSH
- hormon uvolňující kortikotropin MeSH
- iontové kanály MeSH
Pituitary corticotrophs fire action potentials spontaneously and in response to stimulation with corticotropin-releasing hormone (CRH) and arginine vasopressin (AVP), and such electrical activity is critical for calcium signaling and calcium-dependent adrenocorticotropic hormone secretion. These cells typically fire tall, sharp action potentials when spontaneously active, but a variety of other spontaneous patterns have also been reported, including various modes of bursting. There is variability in reports of the fraction of corticotrophs that are electrically active, as well as their patterns of activity, and the sources of this variation are not well understood. The ionic mechanisms responsible for CRH- and AVP-triggered electrical activity in corticotrophs are also poorly characterized. We use electrophysiological measurements and mathematical modeling to investigate possible sources of variability in patterns of spontaneous and agonist-induced corticotroph electrical activity. In the model, variation in as few as two parameters can give rise to many of the types of patterns observed in electrophysiological recordings of corticotrophs. We compare the known mechanisms for CRH, AVP, and glucocorticoid actions and find that different ionic mechanisms can contribute in different but complementary ways to generate the complex time courses of CRH and AVP responses. In summary, our modeling suggests that corticotrophs have several mechanisms at their disposal to achieve their primary function of pacemaking depolarization and increased electrical activity in response to CRH and AVP.NEW & NOTEWORTHY We and others recently demonstrated that the electrical activity and calcium dynamics of corticotrophs are strikingly diverse, both spontaneously and in response to the agonists CRH and AVP. Here we demonstrate this diversity with electrophysiological measurements and use mathematical modeling to investigate its possible sources. We compare the known mechanisms of agonist-induced activity in the model, showing how the context of ionic conductances dictates the effects of agonists even when their target is fixed.
Zobrazit více v PubMed
Aguilera G, Nikodemova M, Wynn PC, Catt KJ. Corticotropin releasing hormone receptors: two decades later. Peptides 25: 319–329, 2004. doi:10.1016/j.peptides.2004.02.002. PubMed DOI
Budry L, Lafont C, El Yandouzi T, Chauvet N, Conéjero G, Drouin J, Mollard P. Related pituitary cell lineages develop into interdigitated 3D cell networks. Proc Natl Acad Sci USA 108: 12515–12520, 2011. doi:10.1073/pnas.1105929108. PubMed DOI PMC
Duncan PJ, Sengül S, Tabak J, Ruth P, Bertram R, Shipston MJ. Large conductance Ca2+-activated K+ (BK) channels promote secretagogue-induced transition from spiking to bursting in murine anterior pituitary corticotrophs. J Physiol 593: 1197–1211, 2015. doi:10.1113/jphysiol.2015.284471. PubMed DOI PMC
Duncan PJ, Tabak J, Ruth P, Bertram R, Shipston MJ. Glucocorticoids inhibit CRH/AVP-evoked bursting activity of male murine anterior pituitary corticotrophs. Endocrinology 157: 3108–3121, 2016. doi:10.1210/en.2016-1115. PubMed DOI PMC
Ermentrout B. Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT for Researchers and Students. Philadelphia, PA: SIAM, 2002. doi:10.1137/1.9780898718195 DOI
Fletcher P, Bertram R, Tabak J. From global to local: exploring the relationship between parameters and behaviors in models of electrical excitability. J Comput Neurosci 40: 331–345, 2016. doi:10.1007/s10827-016-0600-1. PubMed DOI
Goldman MS, Golowasch J, Marder E, Abbott LF. Global structure, robustness, and modulation of neuronal models. J Neurosci 21: 5229–5238, 2001. PubMed PMC
Guérineau N, Corcuff JB, Tabarin A, Mollard P. Spontaneous and corticotropin-releasing factor-induced cytosolic calcium transients in corticotrophs. Endocrinology 129: 409–420, 1991. doi:10.1210/endo-129-1-409. PubMed DOI
Günay C. Neuronal model databases. In: Encyclopedia of Computational Neuroscience, edited by Jaeger D, Jung R. New York: Springer, 2015, p. 2024–2028.
Hentges ST, Otero-Corchon V, Pennock RL, King CM, Low MJ. Proopiomelanocortin expression in both GABA and glutamate neurons. J Neurosci 29: 13684–13690, 2009. doi:10.1523/JNEUROSCI.3770-09.2009. PubMed DOI PMC
Kuryshev YA, Childs GV, Ritchie AK. Corticotropin-releasing hormone stimulation of Ca2+ entry in corticotropes is partially dependent on protein kinase A. Endocrinology 136: 3925–3935, 1995. PubMed
Kuryshev YA, Haak L, Childs GV, Ritchie AK. Corticotropin releasing hormone inhibits an inwardly rectifying potassium current in rat corticotropes. J Physiol 502: 265–279, 1997. doi:10.1111/j.1469-7793.1997.265bk.x. PubMed DOI PMC
Le Tissier PR, Hodson DJ, Lafont C, Fontanaud P, Schaeffer M, Mollard P. Anterior pituitary cell networks. Front Neuroendocrinol 33: 252–266, 2012. doi:10.1016/j.yfrne.2012.08.002. PubMed DOI
LeBeau AP, Robson AB, McKinnon AE, Donald RA, Sneyd J. Generation of action potentials in a mathematical model of corticotrophs. Biophys J 73: 1263–1275, 1997. doi:10.1016/S0006-3495(97)78159-1. PubMed DOI PMC
LeBeau AP, Robson AB, McKinnon AE, Sneyd J. Analysis of a reduced model of corticotroph action potentials. J Theor Biol 192: 319–339, 1998. doi:10.1006/jtbi.1998.0656. PubMed DOI
Lee AK, Smart JL, Rubinstein M, Low MJ, Tse A. Reciprocal regulation of TREK-1 channels by arachidonic acid and CRH in mouse corticotropes. Endocrinology 152: 1901–1910, 2011. doi:10.1210/en.2010-1066. PubMed DOI PMC
Lee AK, Tse A. Mechanism underlying corticotropin-releasing hormone (CRH) triggered cytosolic Ca2+ rise in identified rat corticotrophs. J Physiol 504: 367–378, 1997. doi:10.1111/j.1469-7793.1997.367be.x. PubMed DOI PMC
Lee AK, Tse FW, Tse A. Arginine vasopressin potentiates the stimulatory action of CRH on pituitary corticotropes via a protein kinase C-dependent reduction of the background TREK-1 current. Endocrinology 156: 3661–3672, 2015. doi:10.1210/en.2015-1293. PubMed DOI
Li YX, Stojilković SS, Keizer J, Rinzel J. Sensing and refilling calcium stores in an excitable cell. Biophys J 72: 1080–1091, 1997. doi:10.1016/S0006-3495(97)78758-7. PubMed DOI PMC
Liang Z, Chen L, McClafferty H, Lukowski R, MacGregor D, King JT, Rizzi S, Sausbier M, McCobb DP, Knaus HG, Ruth P, Shipston MJ. Control of hypothalamic-pituitary-adrenal stress axis activity by the intermediate conductance calcium-activated potassium channel, SK4. J Physiol 589: 5965–5986, 2011. doi:10.1113/jphysiol.2011.219378. PubMed DOI PMC
Luini A, Lewis D, Guild S, Corda D, Axelrod J. Hormone secretagogues increase cytosolic calcium by increasing cAMP in corticotropin-secreting cells. Proc Natl Acad Sci USA 82: 8034–8038, 1985. doi:10.1073/pnas.82.23.8034. PubMed DOI PMC
Mani BK, Brueggemann LI, Cribbs LL, Byron KL. Opposite regulation of KCNQ5 and TRPC6 channels contributes to vasopressin-stimulated calcium spiking responses in A7r5 vascular smooth muscle cells. Cell Calcium 45: 400–411, 2009. doi:10.1016/j.ceca.2009.01.004. PubMed DOI PMC
Marchetti C, Childs GV, Brown AM. Membrane currents of identified isolated rat corticotropes and gonadotropes. Am J Physiol Endocrinol Metab 252: E340–E346, 1987. PubMed
Marder E, O’Leary T, Shruti S. Neuromodulation of circuits with variable parameters: single neurons and small circuits reveal principles of state-dependent and robust neuromodulation. Annu Rev Neurosci 37: 329–346, 2014. doi:10.1146/annurev-neuro-071013-013958. PubMed DOI
Prinz AA, Billimoria CP, Marder E. Alternative to hand-tuning conductance-based models: construction and analysis of databases of model neurons. J Neurophysiol 90: 3998–4015, 2003. doi:10.1152/jn.00641.2003. PubMed DOI
Prinz AA, Bucher D, Marder E. Similar network activity from disparate circuit parameters. Nat Neurosci 7: 1345–1352, 2004. doi:10.1038/nn1352. PubMed DOI
Shipston MJ, Duncan RR, Clark AG, Antoni FA, Tian L. Molecular components of large conductance calcium-activated potassium (BK) channels in mouse pituitary corticotropes. Mol Endocrinol 13: 1728–1737, 1999. doi:10.1210/mend.13.10.0355. PubMed DOI
Shipston MJ, Kelly JS, Antoni FA. Glucocorticoids block protein kinase A inhibition of calcium-activated potassium channels. J Biol Chem 271: 9197–9200, 1996. doi:10.1074/jbc.271.16.9197. PubMed DOI
Shorten PR, Robson AB, McKinnon AE, Wall DJ. CRH-induced electrical activity and calcium signalling in pituitary corticotrophs. J Theor Biol 206: 395–405, 2000. doi:10.1006/jtbi.2000.2135. PubMed DOI
Stojilkovic SS, Tabak J, Bertram R. Ion channels and signaling in the pituitary gland. Endocr Rev 31: 845–915, 2010. doi:10.1210/er.2010-0005. PubMed DOI PMC
Takano K, Yasufuku-Takano J, Teramoto A, Fujita T. Corticotropin-releasing hormone excites adrenocorticotropin-secreting human pituitary adenoma cells by activating a nonselective cation current. J Clin Invest 98: 2033–2041, 1996. doi:10.1172/JCI119008. PubMed DOI PMC
Taylor AL, Goaillard JM, Marder E. How multiple conductances determine electrophysiological properties in a multicompartment model. J Neurosci 29: 5573–5586, 2009. doi:10.1523/JNEUROSCI.4438-08.2009. PubMed DOI PMC
Tian L, Knaus HG, Shipston MJ. Glucocorticoid regulation of calcium-activated potassium channels mediated by serine/threonine protein phosphatase. J Biol Chem 273: 13531–13536, 1998. doi:10.1074/jbc.273.22.13531. PubMed DOI
Tian L, Shipston MJ. Characterization of hyperpolarization-activated cation currents in mouse anterior pituitary, AtT20 D16:16 corticotropes. Endocrinology 141: 2930–2937, 2000. doi:10.1210/endo.141.8.7617 PubMed DOI
Tomić M, Kucka M, Kretschmannova K, Li S, Nesterova M, Stratakis CA, Stojilkovic SS. Role of nonselective cation channels in spontaneous and protein kinase A-stimulated calcium signaling in pituitary cells. Am J Physiol Endocrinol Metab 301: E370–E379, 2011. doi:10.1152/ajpendo.00130.2011. PubMed DOI PMC
Tsaneva-Atanasova K, Sherman A, van Goor F, Stojilkovic SS. Mechanism of spontaneous and receptor-controlled electrical activity in pituitary somatotrophs: experiments and theory. J Neurophysiol 98: 131–144, 2007. doi:10.1152/jn.00872.2006. PubMed DOI
Tse A, Lee AK, Tse FW. Ca2+ signaling and exocytosis in pituitary corticotropes. Cell Calcium 51: 253–259, 2012. doi:10.1016/j.ceca.2011.12.007. PubMed DOI
Van Goor F, Li YX, Stojilkovic SS. Paradoxical role of large-conductance calcium-activated K+ (BK) channels in controlling action potential-driven Ca2+ entry in anterior pituitary cells. J Neurosci 21: 5902–5915, 2001a. PubMed PMC
Van Goor F, Zivadinovic D, Stojilkovic SS. Differential expression of ionic channels in rat anterior pituitary cells. Mol Endocrinol 15: 1222–1236, 2001b. doi:10.1210/mend.15.7.0668. PubMed DOI
Xie J, McCobb DP. Control of alternative splicing of potassium channels by stress hormones. Science 280: 443–446, 1998. doi:10.1126/science.280.5362.443. PubMed DOI
Zemkova H, Tomić M, Kucka M, Aguilera G, Stojilkovic SS. Spontaneous and CRH-induced excitability and calcium signaling in mice corticotrophs involves sodium, calcium, and cation-conducting channels. Endocrinology 157: 1576–1589, 2016. doi:10.1210/en.2015-1899. PubMed DOI PMC