Transcriptional and post-translational control of chlorophyll biosynthesis by dark-operative protochlorophyllide oxidoreductase in Norway spruce
Language English Country Netherlands Media print-electronic
Document type Journal Article
PubMed
28229362
DOI
10.1007/s11120-017-0354-2
PII: 10.1007/s11120-017-0354-2
Knihovny.cz E-resources
- Keywords
- Chill stress, Chlorophyll, DPOR, Low temperature, Norway spruce, Protochlorophyllide,
- MeSH
- Chlorophyll genetics metabolism MeSH
- Oxidoreductases Acting on CH-CH Group Donors biosynthesis metabolism MeSH
- Gene Expression Regulation, Plant MeSH
- Picea enzymology genetics metabolism MeSH
- Light MeSH
- Temperature MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Norway MeSH
- Names of Substances
- Chlorophyll MeSH
- Oxidoreductases Acting on CH-CH Group Donors MeSH
- protochlorophyllide reductase MeSH Browser
Unlike angiosperms, gymnosperms use two different enzymes for the reduction of protochlorophyllide to chlorophyllide: the light-dependent protochlorophyllide oxidoreductase (LPOR) and the dark-operative protochlorophyllide oxidoreductase (DPOR). In this study, we examined the specific role of both enzymes for chlorophyll synthesis in response to different light/dark and temperature conditions at different developmental stages (cotyledons and needles) of Norway spruce (Picea abies Karst.). The accumulation of chlorophyll and chlorophyll-binding proteins strongly decreased during dark growth in secondary needles at room temperature as well as in cotyledons at low temperature (7 °C) indicating suppression of DPOR activity. The levels of the three DPOR subunits ChlL, ChlN, and ChlB and the transcripts of their encoding genes were diminished in dark-grown secondary needles. The low temperature had minor effects on the transcription and translation of these genes in cotyledons, which is suggestive for post-translational control in chlorophyll biosynthesis. Taking into account the higher solubility of oxygen at low temperature and oxygen sensitivity of DPOR, we mimicked low-temperature condition by the exposure of seedlings to higher oxygen content (33%). The treatment resulted in an etiolated phenotype of dark-grown seedlings, confirming an oxygen-dependent control of DPOR activity in spruce cotyledons. Moreover, light-dependent suppression of mRNA and protein level of DPOR subunits indicates that more efficiently operating LPOR takes over the DPOR function under light conditions, especially in secondary needles.
See more in PubMed
Clin Chim Acta. 2003 Mar;329(1-2):23-38 PubMed
Photochem Photobiol. 2003 Dec;78(6):543-57 PubMed
Plant Cell Physiol. 1998 Aug;39(8):795-806 PubMed
New Phytol. 2017 Jan;213(1):300-313 PubMed
Photosynth Res. 2004;80(1-3):353-60 PubMed
Planta. 1977 Jan;133(3):295-302 PubMed
Plant Cell Physiol. 2009 Sep;50(9):1663-73 PubMed
EMBO J. 1995 Aug 1;14(15):3712-20 PubMed
Plant Sci. 2000 May 15;154(1):23-29 PubMed
Plant Cell Physiol. 2010 Sep;51(9):1555-70 PubMed
Planta. 1993;190(4):536-45 PubMed
J Plant Physiol. 2010 Jun 15;167(9):693-700 PubMed
Plant Cell Physiol. 2001 Aug;42(8):868-72 PubMed
Planta. 1991 Mar;183(4):520-7 PubMed
Methods. 2001 Dec;25(4):402-8 PubMed
Plant J. 2005 Jan;41(2):282-90 PubMed
Plant Physiol. 2006 Nov;142(3):911-22 PubMed
FEBS Lett. 2012 Feb 3;586(3):211-6 PubMed
Plant Physiol. 1998 Jul;117(3):851-8 PubMed
Trends Plant Sci. 2010 Nov;15(11):614-24 PubMed
Nat Protoc. 2008;3(6):1101-8 PubMed
Proc Natl Acad Sci U S A. 1995 Apr 11;92(8):3254-8 PubMed
Plant Mol Biol. 2001 Dec;47(6):805-13 PubMed
Annu Rev Plant Biol. 2007;58:321-46 PubMed
Plant Physiol. 1989 Jul;90(3):1003-8 PubMed
Genome Biol Evol. 2014 Mar;6(3):620-8 PubMed
Plant Cell Physiol. 2001 Jun;42(6):576-82 PubMed
Biochim Biophys Acta. 2016 Jun;1857(6):799-809 PubMed
J Biol Chem. 2015 Nov 20;290(47):28530-9 PubMed
Nature. 2013 May 30;497(7451):579-84 PubMed
J Biol Chem. 2010 Aug 27;285(35):27336-45 PubMed
Plant J. 2004 Dec;40(6):957-67 PubMed
Plant Cell Physiol. 2011 Nov;52(11):1983-93 PubMed
Biochem Biophys Res Commun. 2016 Feb 12;470(3):704-709 PubMed
Annu Rev Plant Biol. 2003;54:329-55 PubMed
Planta. 2006 Aug;224(3):700-9 PubMed
New Phytol. 2016 May;210(3):808-14 PubMed
Planta. 2009 Jun;230(1):165-76 PubMed
Planta. 2006 Aug;224(3):692-9 PubMed
FEBS Lett. 2000 Jun 2;474(2-3):133-6 PubMed
Nature. 2010 May 6;465(7294):110-4 PubMed
Proc Natl Acad Sci U S A. 2001 Oct 23;98(22):12826-31 PubMed
Planta. 2001 Sep;213(5):667-81 PubMed
Plant Physiol. 2016 Apr;170(4):2040-51 PubMed
Biochemistry. 2015 Sep 1;54(34):5255-62 PubMed
Nat Protoc. 2006;1(1):16-22 PubMed
Plant Physiol. 1995 Aug;108(4):1505-17 PubMed
Mol Microbiol. 2014 Sep;93(5):1066-78 PubMed
Plant Mol Biol. 1999 Feb;39(3):577-92 PubMed
J Am Chem Soc. 1948 Nov;70(11):3558-62 PubMed
Proc Natl Acad Sci U S A. 2009 Dec 15;106(50):21431-6 PubMed
Plant Cell Physiol. 2010 May;51(5):670-81 PubMed