Transcriptional and post-translational control of chlorophyll biosynthesis by dark-operative protochlorophyllide oxidoreductase in Norway spruce
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
28229362
DOI
10.1007/s11120-017-0354-2
PII: 10.1007/s11120-017-0354-2
Knihovny.cz E-zdroje
- Klíčová slova
- Chill stress, Chlorophyll, DPOR, Low temperature, Norway spruce, Protochlorophyllide,
- MeSH
- chlorofyl genetika metabolismus MeSH
- oxidoreduktasy působící na CH-CH vazby biosyntéza metabolismus MeSH
- regulace genové exprese u rostlin MeSH
- smrk enzymologie genetika metabolismus MeSH
- světlo MeSH
- teplota MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Norsko MeSH
- Názvy látek
- chlorofyl MeSH
- oxidoreduktasy působící na CH-CH vazby MeSH
- protochlorophyllide reductase MeSH Prohlížeč
Unlike angiosperms, gymnosperms use two different enzymes for the reduction of protochlorophyllide to chlorophyllide: the light-dependent protochlorophyllide oxidoreductase (LPOR) and the dark-operative protochlorophyllide oxidoreductase (DPOR). In this study, we examined the specific role of both enzymes for chlorophyll synthesis in response to different light/dark and temperature conditions at different developmental stages (cotyledons and needles) of Norway spruce (Picea abies Karst.). The accumulation of chlorophyll and chlorophyll-binding proteins strongly decreased during dark growth in secondary needles at room temperature as well as in cotyledons at low temperature (7 °C) indicating suppression of DPOR activity. The levels of the three DPOR subunits ChlL, ChlN, and ChlB and the transcripts of their encoding genes were diminished in dark-grown secondary needles. The low temperature had minor effects on the transcription and translation of these genes in cotyledons, which is suggestive for post-translational control in chlorophyll biosynthesis. Taking into account the higher solubility of oxygen at low temperature and oxygen sensitivity of DPOR, we mimicked low-temperature condition by the exposure of seedlings to higher oxygen content (33%). The treatment resulted in an etiolated phenotype of dark-grown seedlings, confirming an oxygen-dependent control of DPOR activity in spruce cotyledons. Moreover, light-dependent suppression of mRNA and protein level of DPOR subunits indicates that more efficiently operating LPOR takes over the DPOR function under light conditions, especially in secondary needles.
Zobrazit více v PubMed
Clin Chim Acta. 2003 Mar;329(1-2):23-38 PubMed
Photochem Photobiol. 2003 Dec;78(6):543-57 PubMed
Plant Cell Physiol. 1998 Aug;39(8):795-806 PubMed
New Phytol. 2017 Jan;213(1):300-313 PubMed
Photosynth Res. 2004;80(1-3):353-60 PubMed
Planta. 1977 Jan;133(3):295-302 PubMed
Plant Cell Physiol. 2009 Sep;50(9):1663-73 PubMed
EMBO J. 1995 Aug 1;14(15):3712-20 PubMed
Plant Sci. 2000 May 15;154(1):23-29 PubMed
Plant Cell Physiol. 2010 Sep;51(9):1555-70 PubMed
Planta. 1993;190(4):536-45 PubMed
J Plant Physiol. 2010 Jun 15;167(9):693-700 PubMed
Plant Cell Physiol. 2001 Aug;42(8):868-72 PubMed
Planta. 1991 Mar;183(4):520-7 PubMed
Methods. 2001 Dec;25(4):402-8 PubMed
Plant J. 2005 Jan;41(2):282-90 PubMed
Plant Physiol. 2006 Nov;142(3):911-22 PubMed
FEBS Lett. 2012 Feb 3;586(3):211-6 PubMed
Plant Physiol. 1998 Jul;117(3):851-8 PubMed
Trends Plant Sci. 2010 Nov;15(11):614-24 PubMed
Nat Protoc. 2008;3(6):1101-8 PubMed
Proc Natl Acad Sci U S A. 1995 Apr 11;92(8):3254-8 PubMed
Plant Mol Biol. 2001 Dec;47(6):805-13 PubMed
Annu Rev Plant Biol. 2007;58:321-46 PubMed
Plant Physiol. 1989 Jul;90(3):1003-8 PubMed
Genome Biol Evol. 2014 Mar;6(3):620-8 PubMed
Plant Cell Physiol. 2001 Jun;42(6):576-82 PubMed
Biochim Biophys Acta. 2016 Jun;1857(6):799-809 PubMed
J Biol Chem. 2015 Nov 20;290(47):28530-9 PubMed
Nature. 2013 May 30;497(7451):579-84 PubMed
J Biol Chem. 2010 Aug 27;285(35):27336-45 PubMed
Plant J. 2004 Dec;40(6):957-67 PubMed
Plant Cell Physiol. 2011 Nov;52(11):1983-93 PubMed
Biochem Biophys Res Commun. 2016 Feb 12;470(3):704-709 PubMed
Annu Rev Plant Biol. 2003;54:329-55 PubMed
Planta. 2006 Aug;224(3):700-9 PubMed
New Phytol. 2016 May;210(3):808-14 PubMed
Planta. 2009 Jun;230(1):165-76 PubMed
Planta. 2006 Aug;224(3):692-9 PubMed
FEBS Lett. 2000 Jun 2;474(2-3):133-6 PubMed
Nature. 2010 May 6;465(7294):110-4 PubMed
Proc Natl Acad Sci U S A. 2001 Oct 23;98(22):12826-31 PubMed
Planta. 2001 Sep;213(5):667-81 PubMed
Plant Physiol. 2016 Apr;170(4):2040-51 PubMed
Biochemistry. 2015 Sep 1;54(34):5255-62 PubMed
Nat Protoc. 2006;1(1):16-22 PubMed
Plant Physiol. 1995 Aug;108(4):1505-17 PubMed
Mol Microbiol. 2014 Sep;93(5):1066-78 PubMed
Plant Mol Biol. 1999 Feb;39(3):577-92 PubMed
J Am Chem Soc. 1948 Nov;70(11):3558-62 PubMed
Proc Natl Acad Sci U S A. 2009 Dec 15;106(50):21431-6 PubMed
Plant Cell Physiol. 2010 May;51(5):670-81 PubMed