• This record comes from PubMed

Unexpectedly Facile Rh(I) Catalyzed Polymerization of Ethynylbenzaldehyde Type Monomers: Synthesis of Polyacetylenes Bearing Reactive and Easy Transformable Pendant Carbaldehyde Groups

. 2017 Apr ; 38 (8) : . [epub] 20170223

Language English Country Germany Media print-electronic

Document type Journal Article

The chain coordination polymerization of (ethynylarene)carbaldehydes with unprotected carbaldehyde groups, namely ethynylbenzaldehydes, 1-ethynylbenzene-3,5-dicarboxaldehyde, and 3-[(4-ethynylphenyl)ethynyl]benzaldehyde, is reported for the first time. Polymerization is catalyzed with various Rh(I) catalysts and yields poly(arylacetylene)s with one or two pendant carbaldehyde groups per monomeric unit. Surprisingly, the carbaldehyde groups of the monomers do not inhibit the polymerization unlike the carbaldehyde group of unsubstituted benzaldehyde that acts as a strong inhibitor of Rh(I) catalyzed polymerization of arylacetylenes. The inhibition ability of carbaldehyde groups in (ethynylarene)carbaldehydes seems to be eliminated owing to a simultaneous presence of unsaturated ethynyl groups in (ethynylarene)carbaldehydes. The reactive carbaldehyde groups make poly[(ethynylarene)carbaldehyde]s promising for functional appreciation via various postpolymerization modifications. The introduction of photoluminescence or chirality to poly(ethynylbenzaldehyde)s via quantitative modification of their carbaldehyde groups in reaction with either photoluminescent or chiral primary amines under formation of the polymers with Schiff-base-type pendant groups is given as an example.

References provided by Crossref.org

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...