Uniformity under in vitro conditions: Changes in the phenotype of cancer cell lines derived from different medulloblastoma subgroups

. 2017 ; 12 (2) : e0172552. [epub] 20170223

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28231263

Medulloblastoma comprises four main subgroups (WNT, SHH, Group 3 and Group 4) originally defined by transcriptional profiling. In primary medulloblastoma tissues, these groups are thought to be distinguishable using the immunohistochemical detection of β-catenin, filamin A, GAB1 and YAP1 protein markers. To investigate the utility of these markers for in vitro studies using medulloblastoma cell lines, immunoblotting and indirect immunofluorescence were employed for the detection of β-catenin, filamin A, GAB1 and YAP1 in both DAOY and D283 Med reference cell lines and the panel of six medulloblastoma cell lines derived in our laboratory from the primary tumor tissues of known molecular subgroups. Immunohistochemical detection of these markers was performed on formalin-fixed paraffin-embedded tissue of the matching primary tumors. The results revealed substantial divergences between the primary tumor tissues and matching cell lines in the immunoreactivity pattern of medulloblastoma-subgroup-specific protein markers. Regardless of the molecular subgroup of the primary tumor, all six patient-derived medulloblastoma cell lines exhibited a uniform phenotype: immunofluorescence showed the nuclear localization of YAP1, accompanied by strong cytoplasmic positivity for β-catenin and filamin A, as well as weak positivity for GAB1. The same immunoreactivity pattern was also found in both DAOY and D283 Med reference medulloblastoma cell lines. Therefore, we can conclude that various medulloblastoma cell lines tend to exhibit the same characteristics of protein marker expression under standard in vitro conditions. Such a finding emphasizes the importance of the analyses of primary tumors in clinically oriented medulloblastoma research and the urgent need to develop in vitro models of improved clinical relevance, such as 3D cultures and organotypic slice cultures.

Zobrazit více v PubMed

Pizer BL, Clifford SC. The potential impact of tumour biology on improved clinical practice for medulloblastoma: progress towards biologically driven clinical trials. Br J Neurosurg. 2009;23:364–75. 10.1080/02688690903121807 PubMed DOI

Eberhart CG, Kepner JL, Goldthwaite PT, Kun LE, Duffner PK, Friedman HS, et al. Histopathologic grading of medulloblastomas: a Pediatric Oncology Group study. Cancer 2002;94:552–60. 10.1002/cncr.10189 PubMed DOI

Rutkowski S, Bode U, Deinlein F, Ottensmeier H, Warmuth-Metz M, Soerensen N, et al. Treatment of early childhood medulloblastoma by postoperative chemotherapy alone. N Engl J Med. 2005;352:978–86. 10.1056/NEJMoa042176 PubMed DOI

Jones DT, Jager N, Kool M, Zichner T, Hutter B, Sultan M, et al. Dissecting the genomic complexity underlying medulloblastoma. Nature 2012;488:100–5. 10.1038/nature11284 PubMed DOI PMC

Kool M, Korshunov A, Remke M, Jones DT, Schlanstein M, Northcott PA, et al. Molecular subgroups of medulloblastoma: an international meta-analysis of transcriptome, genetic aberrations, and clinical data of WNT, SHH, Group 3, and Group 4 medulloblastomas. Acta Neuropathol. 2012;123:473–84. 10.1007/s00401-012-0958-8 PubMed DOI PMC

Northcott PA, Jones DT, Kool M, Robinson GW, Gilbertson RJ, Cho YJ, et al. Medulloblastomics: the end of the beginning. Nat Rev Cancer 2012a;12:818–34. PubMed PMC

Northcott PA, Shih DJ, Peacock J, Garzia L, Morrissy AS, Zichner T, et al. Subgroup-specific structural variation across 1,000 medulloblastoma genomes. Nature 2012b;488:49–56. PubMed PMC

Dubuc AM, Remke M, Korshunov A, Northcott PA, Zhan SH, Mendez-Lago M, et al. Aberrant patterns of H3K4 and H3K27 histone lysine methylation occur across subgroups in medulloblastoma. Acta Neuropathol. 2013;125:373–84. 10.1007/s00401-012-1070-9 PubMed DOI PMC

Ramaswamy V, Remke M, Bouffet E, Bailey S, Clifford SC, Doz F, et al. Risk stratification of childhood medulloblastoma in the molecular era: the current consensus. Acta Neuropathol. 2016;131:821–31. 10.1007/s00401-016-1569-6 PubMed DOI PMC

Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol. 2016;131:803–20. 10.1007/s00401-016-1545-1 PubMed DOI

Schwalbe EC, Williamson D, Lindsey JC, Hamilton D, Ryan SL, Megahed H, et al. DNA methylation profiling of medulloblastoma allows robust subclassification and improved outcome prediction using formalin-fixed biopsies. Acta Neuropathol. 2013;125:359–71. 10.1007/s00401-012-1077-2 PubMed DOI PMC

Schwalbe EC, Hicks D, Rafiee G, Bashton M, Gohlke H, Enshaei A, et al. Routine diagnostic medulloblastoma subgrouping using low-cost, low-input DNA methylomics: application to trials cohorts previously refractory-to-analysis. Neuro Oncol. 2016;18 Suppl 3:iii102.

Ellison DW, Dalton J, Kocak M, Nicholson SL, Fraga C, Neale G et al. Medulloblastoma: clinicopathological correlates of SHH, WNT, and non-SHH/WNT molecular subgroups. Acta Neuropathol. 2011;121: 381–96. 10.1007/s00401-011-0800-8 PubMed DOI PMC

Goschzik T, Zur Mühlen A, Kristiansen G, Haberler C, Stefanits H, Friedrich C, et al. Molecular stratification of medulloblastoma: comparison of histological and genetic methods to detect Wnt activated tumours. Neuropathol Appl Neurobiol. 2015;41:135–44. 10.1111/nan.12161 PubMed DOI

Kaur K, Kakkar A, Kumar A, Mallick S, Julka PK, Gupta D, et al. Integrating Molecular Subclassification of Medulloblastomas into Routine Clinical Practice: A Simplified Approach. Brain Pathol. 2016;26:334–43. 10.1111/bpa.12293 PubMed DOI PMC

Lin CY, Erkek S, Tong Y, Yin L, Federation AJ, Zapatka M, et al. Active medulloblastoma enhancers reveal subgroup-specific cellular origins. Nature 2016;530:57–62. 10.1038/nature16546 PubMed DOI PMC

Triscott J, Lee C, Foster C, Manoranjan B, Pambid MR, Berns R, et al. Personalizing the treatment of pediatric medulloblastoma: Polo-like kinase 1 as a molecular target in high-risk children. Cancer Res. 2013;73:6734–44. 10.1158/0008-5472.CAN-12-4331 PubMed DOI

Ecker J, Oehme I, Mazitschek R, Korshunov A, Kool M, Hielscher T, et al. Targeting class I histone deacetylase 2 in MYC amplified group 3 medulloblastoma. Acta Neuropathol Commun. 2015;3:22 10.1186/s40478-015-0201-7 PubMed DOI PMC

Xu J, Margol A, Asgharzadeh S, Erdreich-Epstein A. Pediatric Brain Tumor Cell Lines. J Cell Biochem. 2015;116:218–24. 10.1002/jcb.24976 PubMed DOI PMC

Ivanov DP, Coyle B, Walker DA, Grabowska AM. In vitro models of medulloblastoma: Choosing the right tool for the job. J Biotechnol. 2016;236:10–25. 10.1016/j.jbiotec.2016.07.028 PubMed DOI

Veselska R, Kuglik P, Cejpek P, Svachova H, Neradil J, Loja T, et al. Nestin expression in the cell lines derived from glioblastoma multiforme. BMC Cancer 2006;6:32 10.1186/1471-2407-6-32 PubMed DOI PMC

van Staveren WC, Solis DY, Hebrant A, Detours V, Dumont JE, Maenhaut C. Human cancer cell lines: Experimental models for cancer cells in situ? For cancer stem cells? Biochim Biophys Acta 2009;1795:92–103. 10.1016/j.bbcan.2008.12.004 PubMed DOI

Anglesio MS, Wiegand KC, Melnyk N, Chow C, Salamanca C, Prentice LM, et al. Type-specific cell line models for type-specific ovarian cancer research. PLoS One 2013;8:e72162 10.1371/journal.pone.0072162 PubMed DOI PMC

Jacob F, Nixdorf S, Hacker NF, Heinzelmann-Schwarz VA. Reliable in vitro studies require appropriate ovarian cancer cell lines. J Ovarian Res. 2014;7:60 10.1186/1757-2215-7-60 PubMed DOI PMC

Holliday DL, Speirs V. Choosing the right cell line for breast cancer research. Breast Cancer Res. 2011;13:215 10.1186/bcr2889 PubMed DOI PMC

Gazdar AF, Gao B, Minna JD. Lung cancer cell lines: Useless artifacts or invaluable tools for medical science? Lung Cancer 2010;68:309–18. 10.1016/j.lungcan.2009.12.005 PubMed DOI PMC

Pilli T, Prasad KV, Jayarama S, Pacini F, Prabhakar BS. Potential utility and limitations of thyroid cancer cell lines as models for studying thyroid cancer. Thyroid 2009;19:1333–42. 10.1089/thy.2009.0195 PubMed DOI PMC

Tilghman RW, Cowan CR, Mih JD, Koryakina Y, Gioeli D, Slack-Davis JK, et al. Matrix rigidity regulates cancer cell growth and cellular phenotype. PLoS One 2010;5:e12905 10.1371/journal.pone.0012905 PubMed DOI PMC

Stossel TP, Condeelis J, Cooley L, Hartwig JH, Noegel A, Schleicher M, et al. Filamins as integrators of cell mechanics and signalling. Nat Rev Mol Cell Biol. 2001;2:138–45. 10.1038/35052082 PubMed DOI

Kim H, McCulloch CA. Filamin A mediates interactions between cytoskeletal proteins that control cell adhesion. FEBS Lett. 2011;585:18–22. 10.1016/j.febslet.2010.11.033 PubMed DOI

Kim H, Sengupta A, Glogauer M, McCulloch CA. Filamin A regulates cell spreading and survival via beta1 integrins. Exp Cell Res. 2008;314:834–46. 10.1016/j.yexcr.2007.11.022 PubMed DOI

Kim H, Nakamura F, Lee W, Shifrin Y, Arora P, McCulloch CA. Filamin A is required for vimentin-mediated cell adhesion and spreading. Am J Physiol Cell Physiol. 2010;298:C221–C236. 10.1152/ajpcell.00323.2009 PubMed DOI PMC

Baldassarre M, Razinia Z, Brahme NN, Buccione R, Calderwood DA. Filamin A controls matrix metalloproteinase activity and regulates cell invasion in human fibrosarcoma cells. J Cell Sci. 2012;125:3858–69. 10.1242/jcs.104018 PubMed DOI PMC

Shao QQ, Zhang TP, Zhao WJ, Liu ZW, You L, Zhou L, et al. Filamin A: Insights into its Exact Role in Cancers. Pathol Oncol Res. 2016;22:245–52. 10.1007/s12253-015-9980-1 PubMed DOI

Yang Z, Xue B, Umitsu M, Ikura M, Muthuswamy SK, Neel BG. The signaling adaptor GAB1 regulates cell polarity by acting as a PAR protein scaffold. Mol Cell. 2012;47:469–83. 10.1016/j.molcel.2012.06.037 PubMed DOI PMC

Felici A, Giubellino A, Bottaro DP. Gab1 mediates hepatocyte growth factor-stimulated mitogenicity and morphogenesis in multipotent myeloid cells. J Cell Biochem. 2010; 111:310–21. 10.1002/jcb.22695 PubMed DOI PMC

Dixit D, Ghildiyal R, Anto NP, Sen E. Chaetocin-induced ROS-mediated apoptosis involves ATM-YAP1 axis and JNK-dependent inhibition of glucose metabolism. Cell Death Dis. 2014;5:e1212 10.1038/cddis.2014.179 PubMed DOI PMC

Pambid MR, Berns R, Adomat HH, Hu K, Triscott J, Maurer N, et al. Overcoming resistance to Sonic Hedgehog inhibition by targeting p90 ribosomal S6 kinase in pediatric medulloblastoma. Pediatr Blood Cancer 2014;61:107–15. 10.1002/pbc.24675 PubMed DOI

Liang L, Aiken C, McClelland R, Morrison LC, Tatari N, Remke M, et al. Characterization of novel biomarkers in selecting for subtype specific medulloblastoma phenotypes. Oncotarget 2015;6:38881–900. 10.18632/oncotarget.6195 PubMed DOI PMC

Domcke S, Sinha R, Levine DA, Sander C, Schultz N. Evaluating cell lines as tumour models by comparison of genomic profiles. Nat Commun. 2013;4:2126 10.1038/ncomms3126 PubMed DOI PMC

Boora GK, Kanwar R, Kulkarni AA, Pleticha J, Ames M, Schroth G, et al. Exome-level comparison of primary well-differentiated neuroendocrine tumors and their cell lines. Cancer Genet 2015;208:374–81. 10.1016/j.cancergen.2015.04.002 PubMed DOI

Gillet JP, Calcagno AM, Varma S, Marino M, Green LJ, Vora MI, et al. Redefining the relevance of established cancer cell lines to the study of mechanisms of clinical anti-cancer drug resistance. Proc Natl Acad Sci U S A 2011;108:18708–13. 10.1073/pnas.1111840108 PubMed DOI PMC

Vogel TW, Zhuang Z, Li J, Okamoto H, Furuta M, Lee YS, et al. Proteins and protein pattern differences between glioma cell lines and glioblastoma multiforme. Clin Cancer Res. 2005;11:3624–32. 10.1158/1078-0432.CCR-04-2115 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...