Mate choice for major histocompatibility complex complementarity in a strictly monogamous bird, the grey partridge (Perdix perdix)
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
28239400
PubMed Central
PMC5312559
DOI
10.1186/s12983-017-0194-0
PII: 194
Knihovny.cz E-zdroje
- Klíčová slova
- Grey partridge, Inbreeding avoidance, MHC genes, Mate choice, Ornaments, Sexual selection, Social monogamy,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Sexual selection has been hypothesised as favouring mate choice resulting in production of viable offspring with genotypes providing high pathogen resistance. Specific pathogen recognition is mediated by genes of the major histocompatibility complex (MHC) encoding proteins fundamental for adaptive immune response in jawed vertebrates. MHC genes may also play a role in odour-based individual recognition and mate choice, aimed at avoiding inbreeding. MHC genes are known to be involved in mate choice in a number of species, with 'good genes' (absolute criteria) and 'complementary genes' (self-referential criteria) being used to explain MHC-based mating. Here, we focus on the effect of morphological traits and variation and genetic similarity between individuals in MHC class IIB (MHCIIB) exon 2 on mating in a free-living population of a monogamous bird, the grey partridge. RESULTS: We found no evidence for absolute mate choice criteria as regards grey partridge MHCIIB genotypes, i.e., number and occurrence of amino acid variants, though red chroma of the spot behind eyes was positively associated with male pairing success. On the other hand, mate choice at MHCIIB was based on relative criteria as females preferentially paired with more dissimilar males having a lower number of shared amino acid variants. This observation supports the 'inbreeding avoidance' and 'complementary genes' hypotheses. CONCLUSIONS: Our study provides one of the first pieces of evidence for MHC-based mate choice for genetic complementarity in a strictly monogamous bird. The statistical approach employed can be recommended for testing mating preferences in cases where availability of potential mates (recorded with an appropriate method such as radio-tracking) shows considerable temporal variation. Additional genetic analyses using neutral markers may detect whether MHC-based mate choice for complementarity emerges as a by-product of general inbreeding avoidance in grey partridges.
Zobrazit více v PubMed
Darwin C. The descent of man, and selection in relation to sex. New York: D. Appleton; 1871
Andersson M, Simmons LW. Sexual selection and mate choice. Trends Ecol Evol. 2006;21:296–302. doi: 10.1016/j.tree.2006.03.015. PubMed DOI
Cunningham EJA, Birkhead TR. Sex roles and sexual selection. Anim Behav. 1998;56:1311–1321. doi: 10.1006/anbe.1998.0953. PubMed DOI
Møller AP, Jennions MD. How important are direct fitness benefits of sexual selection? Naturwissenschaften. 2001;88:401–415. doi: 10.1007/s001140100255. PubMed DOI
Hoelzer GA. The good parent process of sexual selection. Anim Behav. 1989;38:1067–1078. doi: 10.1016/S0003-3472(89)80146-0. DOI
Hamilton WD. Mate choice near or far. Am Zool. 1990;30:341–352. doi: 10.1093/icb/30.2.341. DOI
Andersson M. Sexual selection. Princeton University Press: Princeton; 1994.
Møller AP. Sexual selection and the barn swallow. Oxford: Oxford University Press; 1994.
Fisher RA. The genetical theory of natural selection. Oxford: Clarendon; 1930.
Hamilton WD, Zuk M. Heritable true fitness and bright birds: a role for parasites? Science. 1982;218:384–387. doi: 10.1126/science.7123238. PubMed DOI
Heywood JS. Sexual selection by the handicap mechanism. Evolution. 1989;43:1387–1397. doi: 10.2307/2409455. PubMed DOI
Zelano B, Edwards SV. An Mhc component to kin recognition and mate choice in birds: predictions, progress, and prospects. Am Nat. 2002;160:S225–S237. doi: 10.1086/342897. PubMed DOI
von Schantz T, Wittzell H, Göransson G, Grahn M, Persson K. MHC genotype and male ornamentation: genetic evidence for the Hamilton-Zuk model. Proc R Soc B. 1996;263:265–271. doi: 10.1098/rspb.1996.0041. PubMed DOI
von Schantz T, Wittzell H, Göransson G, Grahn M. Mate choice, male condition-dependent ornamentation and MHC in the pheasant. Hereditas. 1997;127:133–140. doi: 10.1111/j.1601-5223.1997.t01-1-00133.x. DOI
Janeway CA, Travers P, Walport M, Capra JD. Immunobiology: the immune system in health and disease. London: Current Biology Publications; 1999.
Milinski M. The major histocompatibility complex, sexual selection and mate choice. Annu Rev Ecol Evol Syst. 2006;37:159–186. doi: 10.1146/annurev.ecolsys.37.091305.110242. DOI
Abbas AK, Lichtman AH, Pober JS. Cellular and molecular immunology. Philadelphia: W. B. Saunders Company; 1994.
Richardson DS, Komdeur J, Burke T, von Schantz T. MHC-based patterns of social and extra-pair mate choice in the Seychelles warbler. Proc R Soc B. 2005;272:759–767. doi: 10.1098/rspb.2004.3028. PubMed DOI PMC
Olsson M, Madsen T, Nordby J, Wapstra E, Ujvari B, Wittsell H. Major histocompatibility complex and mate choice in sand lizards. Proc R Soc B. 2003;270:S254–S256. doi: 10.1098/rsbl.2003.0079. PubMed DOI PMC
Jordan WC, Bruford MW. New perspective on mate choice and the MHC. Heredity. 1998;81:239–245. doi: 10.1038/sj.hdy.6884280. PubMed DOI
Penn DJ. The scent of genetic compatibility: sexual selection and the major histocompatibility complex. Ethology. 2002;108:1–21. doi: 10.1046/j.1439-0310.2002.00768.x. DOI
Reusch TBH, Häberli MA, Aeschlimann PB, Milinski M. Female sticklebacks count alleles in a strategy of sexual selection explaining MHC polymorphism. Nature. 2001;414:300–302. doi: 10.1038/35104547. PubMed DOI
Aeschlimann PB, Häberli MA, Reusch TBH, Boehm T, Milinski M. Female sticklebacks Gasterosteus aculeatus use self-reference to optimize MHC allele number during mate selection. Behav Ecol Sociobiol. 2003;54:119–126.
Bos DH, Williams RN, Gopurenko D, Bulut Z, Dewoody JA. Condition-dependent mate choice and a reproductive disadvantage for MHC-divergent male tiger salamanders. Mol Ecol. 2009;18:3307–3315. doi: 10.1111/j.1365-294X.2009.04242.x. PubMed DOI
Freeman-Gallant CR, Meguerdichian M, Wheelwright NT, Sollecito SV. Social pairing and female mating fidelity predicted by restriction fragment length polymorphism similarity at the major histocompatibility complex in a songbird. Mol Ecol. 2003;12:3077–3083. doi: 10.1046/j.1365-294X.2003.01968.x. PubMed DOI
Bonneaud C, Chastel O, Federici P, Westerdahl H, Sorci G. Complex Mhc-based mate choice in a wild passerine. Proc R Soc B. 2006;273:1111–1116. doi: 10.1098/rspb.2005.3325. PubMed DOI PMC
Baratti M, Dessì-Fulgheri F, Ambrosini R, Bonisoli-Alquati A, Caprioli M, Goti E, Matteo A, Monnanni R, Ragionieri L, Ristori E, Romano M, Rubolini D, Scialpi A, Saino N. MHC genotype predicts mate choice in the ring-necked pheasant Phasianus colchicus. J Evol Biol. 2012;25:1531–1542. doi: 10.1111/j.1420-9101.2012.02534.x. PubMed DOI
Griggio M, Biard C, Penn DJ, Hoi H. Female house sparrows “count on” male genes: experimental evidence for MHC-dependent mate preferences in birds. BMC Evol Biol. 2011;11:44. doi: 10.1186/1471-2148-11-44. PubMed DOI PMC
Strandh M, Westerdahl H, Pontarp M, Canbäck B, Dubois M-P, Miquel C, Taberlet P, Bonadonna F. Major histocompatibility complex class II compatibility, but not class I, predicts mate choice in a bird with highly developed olfaction. Proc R Soc B. 2012;279:4457–4463. doi: 10.1098/rspb.2012.1562. PubMed DOI PMC
Ekblom R, Sæther SA, Grahn M, Fiske P, Kålås JA, Höglund J. Major histocompatibility complex variation and mate choice in a lekking bird, the great snipe (Gallinago media) Mol Ecol. 2004;13:3821–3828. doi: 10.1111/j.1365-294X.2004.02361.x. PubMed DOI
Piertney SB, Oliver MK. The evolutionary ecology of the major histocompatibility complex. Heredity. 2006;96:7–21. PubMed
Mays HL, Jr, Hill GE. Choosing mates: good genes versus genes that are a good fit. Trends Ecol Evol. 2004;19:554–559. doi: 10.1016/j.tree.2004.07.018. PubMed DOI
Piálek J, Albrecht T. Choosing mates: complementary versus compatible genes. Trends Ecol Evol. 2005;20:63. doi: 10.1016/j.tree.2004.11.018. PubMed DOI
Woelfing B, Traulsen A, Milinski M, Boehm T. Does intra-individual major histocompatibility complex diversity keep a golden mean? Phil Trans R Soc B. 2009;364:117–128. doi: 10.1098/rstb.2008.0174. PubMed DOI PMC
Colegrave N, Kotiaho JS, Tomkins JL. Mate choice or polyandry: reconciling genetic compatibility and good genes sexual selection. Evol Ecol Res. 2002;4:911–917.
Landry C, Garant D, Duchesne P, Bernatchez L. ʻGood genes as heterozygosityʼ: the major histocompatibility complex and mate choice in Atlantic salmon (Salmo salar) Proc R Soc B. 2001;268:1279–1285. doi: 10.1098/rspb.2001.1659. PubMed DOI PMC
Jennions MD, Petrie M. Variation in mate choice and mating preferences: a review of causes and consequences. Biol Rev. 1997;72:283–327. doi: 10.1017/S0006323196005014. PubMed DOI
Griffith SC, Parker TH, Olson VA. Melanin- versus carotenoid-based sexual signals: is the difference really so black and red? Anim Behav. 2006;71:749–763. doi: 10.1016/j.anbehav.2005.07.016. DOI
Hill GE, McGraw KJ, editors. Bird coloration,vol. I: mechanisms and measurements. Cambridge: Harvard University Press; 2006.
Badyaev AV, Hill GH. Evolution of sexual dichromatism: contribution of carotenoid- versus melanin-based coloration. Biol J Linn Soc. 2000;69:153–172. doi: 10.1111/j.1095-8312.2000.tb01196.x. DOI
Hill GE. Condition-dependent traits as signals of the functionality of vital cellular processes. Ecol Lett. 2011;14:625–634. doi: 10.1111/j.1461-0248.2011.01622.x. PubMed DOI
Dunn PO, Bollmer JL, Freeman-Gallant CR, Whittingham LA. MHC variation is related to a sexually selected ornament, survival, and parasite resistance in common yellowthroats. Evolution. 2013;67:679–687. doi: 10.1111/j.1558-5646.2012.01799.x. PubMed DOI
Vaněčková D. Development of Grey Partridge (
Neff BD, Pitcher TE. Genetic quality and sexual selection: an integrated framework for good genes and compatible genes. Mol Ecol. 2005;14:19–38. doi: 10.1111/j.1365-294X.2004.02395.x. PubMed DOI
Jenkins D. Social behaviour in the partridge Perdix perdix. Ibis. 1961;103a:155–188. doi: 10.1111/j.1474-919X.1961.tb02431.x. DOI
Potts GR. The partridge: pesticides, predation and conservation. London: Collins; 1986.
Jenkins D. Population control in protected partridges (Perdix perdix) J Anim Ecol. 1961;30:235–258. doi: 10.2307/2296. DOI
Rymešová D, Šmilauer P, Šálek M. Sex- and age-biased mortality in wild grey partridge Perdix perdix populations. Ibis. 2012;154:815–824. doi: 10.1111/j.1474-919X.2012.01259.x. DOI
Fábián G. Genetical consideration over the variation of the grey Hungarian partridge’s breast colouration. Aquila. 1979;86:13–17.
Svobodová J, Gabrielová B, Synek P, Marsik P, Vaněk T, Albrecht T, Vinkler M. The health signalling of ornamental traits in the Grey Partridge (Perdix perdix) J Ornithol. 2013;154:717–725. doi: 10.1007/s10336-013-0936-5. DOI
Beani L, Dessì-Fulgheri F. Mate choice in the grey partridge, Perdix perdix: role of physical and behavioural male traits. Anim Behav. 1995;49:347–356. doi: 10.1006/anbe.1995.0047. DOI
Fusani L, Beani L, Lupo C, Dessì-Fulgheri F. Sexually selected vigilance behaviour of the grey partridge is affected by plasma androgen levels. Anim Behav. 1997;54:1012–1018. doi: 10.1006/anbe.1997.0518. PubMed DOI
Westerdahl H. Passerine MHC: genetic variation and disease resistance in the wild. J Ornithol. 2007;148:S469–S477. doi: 10.1007/s10336-007-0230-5. DOI
Gillingham MAF, Richardson DS, Løvlie H, Moynihan A, Worley K, Pizzari T. Cryptic preference for MHC-dissimilar females in male red junglefowl, Gallus gallus. Proc R Soc B. 2009;276:1083–1092. doi: 10.1098/rspb.2008.1549. PubMed DOI PMC
Kamiya T, O’Dwyer K, Westerdahl H, Senior A, Nakagawa S. A quantitative review of MHC-based mating preference: the role of diversity and dissimilarity. Mol Ecol. 2014;23:5151–5163. doi: 10.1111/mec.12934. PubMed DOI
Rymešová D, Tomášek O, Šálek M. Differences in mortality rates, dispersal distances and breeding success of commercially reared and wild grey partridges in the Czech agricultural landscape. Eur J Wildl Res. 2013;59:815–824. doi: 10.1007/s10344-013-0735-6. DOI
Hale ML, Verduijn MH, Møller AP, Wolff K, Petrie M. Is the peacock’s train an honest signal of genetic quality at the major histocompatibility complex? J Evol Biol. 2009;22:1284–1294. doi: 10.1111/j.1420-9101.2009.01746.x. PubMed DOI
Holmes WG, Sherman PW. Kin recognition in animals. Am Sci. 1983;71:46–55.
Brown JL, Eklund A. Kin recognition and the major histocompatibility complex: an integrative review. Am Nat. 1994;143:435–461. doi: 10.1086/285612. DOI
Potts WK, Wakeland EK. Evolution of MHC genetic diversity: a tale of incest, pestilence and sexual preference. Trends Genet. 1993;9:408–412. doi: 10.1016/0168-9525(93)90103-O. PubMed DOI
Penn DJ, Potts WK. The evolution of mating preferences and major histocompatibility complex genes. Am Nat. 1999;153:145–146. doi: 10.1086/303166. PubMed DOI
Sherborne AL, Thom MD, Paterson S, Jury F, Ollier WER, Stockley P, Beynon RJ, Hurst JL. The genetic basis of inbreeding avoidance in house mice. Curr Biol. 2007;17:2061–2066. doi: 10.1016/j.cub.2007.10.041. PubMed DOI PMC
Lehmann L, Perrin N. Inbreeding avoidance through kin recognition: choosy females boost male dispersal. Am Nat. 2003;162:638–652. doi: 10.1086/378823. PubMed DOI
Kokko H, Ots I. When not to avoid inbreeding. Evolution. 2006;60:467–475. doi: 10.1111/j.0014-3820.2006.tb01128.x. PubMed DOI
Sepil I, Radersma R, Santure AW, de Cauwer I, Slate J, Sheldon BC. No evidence for MHC class I-based disassortative mating in a wild population of great tits. J Evol Biol. 2015;28:642–654. doi: 10.1111/jeb.12600. PubMed DOI
Kuijper DPJ, Oosterveld E, Wymenga E. Decline and potential recovery of the European grey partridge (Perdix perdix) population—a review. Eur J Wildl Res. 2009;55:455–463. doi: 10.1007/s10344-009-0311-2. DOI
Grob B, Knapp LA, Martin RD, Anzenberger G. The major histocompatibility complex and mate choice: inbreeding avoidance and selection of good genes. Exp Clin Immunogenet. 1998;15:119–129. doi: 10.1159/000019063. PubMed DOI
Eggert F, Müller-Ruchholtz W, Ferstl R. Olfactory cues associated with the major histocompatibility complex. Genetica. 1998;104:191–197. doi: 10.1023/A:1026402531196. PubMed DOI
Milinski M, Griffiths S, Wegner KM, Reusch TBH, Haas-Assenbaum A, Boehm T. Mate choice decisions of stickleback females predictably modified by MHC peptide ligands. PNAS. 2005;102:4414–4418. doi: 10.1073/pnas.0408264102. PubMed DOI PMC
Bonadonna F, Nevitt GA. Partner-specific odor recognition in an Antarctic seabird. Science. 2004;306:835. doi: 10.1126/science.1103001. PubMed DOI
Hagelin JC, Jones IL, Rasmussen LEL. A tangerine-scented social odour in a monogamous seabird. Proc R Soc B. 2003;270:1323–1329. doi: 10.1098/rspb.2003.2379. PubMed DOI PMC
Balthazar J, Taziaux M. The underestimated role of olfaction in avian reproduction? Behav Brain Res. 2009;200:248–259. doi: 10.1016/j.bbr.2008.08.036. PubMed DOI PMC
Leclaire S, van Dongen WFD, Voccia S, Merkling T, Ducamp C, Hatch SA, Blanchard P, Danchin É, Wagner RH. Preen secretion encode information on MHC similarity in certain sex-dyads in a monogamous seabird. Sci Rep. 2014;4:6920. doi: 10.1038/srep06920. PubMed DOI PMC
Corfield JR, Price K, Iwaniuk AN, Gutierrez-Ibañez C, Birkhead T, Wylie DR. Diversity in olfactory bulb size in birds reflects allometry, ecology, and phylogeny. Front Neuroanat. 2015 PubMed PMC
Hirao A, Aoyama M, Sugita S. The role of uropygial gland on sexual behavior in domestic chicken Gallus gallus domesticus. Behav Process. 2009;80:115–120. doi: 10.1016/j.beproc.2008.10.006. PubMed DOI
Čech L, Šumpich J, Zabloudil V. Jihlavsko. In: Mackovič P, Sedláček M, editors. Chráněná území ČR, vol. VII. Prague: Nature Conservation Agency of the Czech Republic and EkoCentrum Brno; 2002
Mougeot F, Martínez-Padilla J, Pérez-Rodríguez L, Bortolotti GR. Carotenoid-based colouration and ultraviolet reflectance of the sexual ornament of grouse. Behav Ecol Sociobiol. 2007;64:741–751. doi: 10.1007/s00265-006-0304-z. DOI
Kenward RE. A manual for wildlife radio tagging. London: Academic; 2001.
Promerová M, Králová T, Bryjová A, Albrecht T, Bryja J. MHC class IIB exon 2 polymorphism in the Grey partridge (Perdix perdix) is shaped by selection, recombination and gene conversion. PLoS One. 2013 PubMed PMC
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;28:2731–2739. doi: 10.1093/molbev/msr121. PubMed DOI PMC
Wetton JH, Carter RE, Parkin DT, Walters D. Demographic study of a wild house sparrow population by DNA fingerprinting. Nature. 1987;327:147–149. doi: 10.1038/327147a0. PubMed DOI
Peig J, Green AJ. New perspectives for estimating body condition from mass/length data: the scaled mass index as an alternative method. Oikos. 2009;118:1883–1891. doi: 10.1111/j.1600-0706.2009.17643.x. DOI
Crawley MJ. The R, book. Chichester: John Wiley & Sons; 2007.
Whittingham MJ, Stephens PA, Bradbury RB, Freckleton RP. Why do we still use stepwise modelling in ecology and behaviour? J Anim Ecol. 2006;75:1182–1189. doi: 10.1111/j.1365-2656.2006.01141.x. PubMed DOI
R Development Core Team . R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2011.