Solution structure of monomeric and trimeric photosystem I of Thermosynechococcus elongatus investigated by small-angle X-ray scattering
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
28258466
DOI
10.1007/s11120-017-0342-6
PII: 10.1007/s11120-017-0342-6
Knihovny.cz E-zdroje
- Klíčová slova
- Detergent belt, Photosystem I, Small-angle X-ray scattering, n-Dodecyl-β-D-maltoside,
- MeSH
- bakteriální proteiny chemie MeSH
- detergenty chemie MeSH
- difrakce rentgenového záření * MeSH
- fotosystém I (proteinový komplex) chemie metabolismus MeSH
- maloúhlový rozptyl * MeSH
- molekulární modely MeSH
- multimerizace proteinu * MeSH
- roztoky MeSH
- spektrometrie hmotnostní - ionizace laserem za účasti matrice MeSH
- Synechococcus metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- bakteriální proteiny MeSH
- detergenty MeSH
- fotosystém I (proteinový komplex) MeSH
- roztoky MeSH
The structure of monomeric and trimeric photosystem I (PS I) of Thermosynechococcus elongatus BP1 (T. elongatus) was investigated by small-angle X-ray scattering (SAXS). The scattering data reveal that the protein-detergent complexes possess radii of gyration of 58 and 78 Å in the cases of monomeric and trimeric PS I, respectively. The results also show that the samples are monodisperse, virtually free of aggregation, and contain empty detergent micelles. The shape of the protein-detergent complexes can be well approximated by elliptical cylinders with a height of 78 Å. Monomeric PS I in buffer solution exhibits minor and major radii of the elliptical cylinder of about 50 and 85 Å, respectively. In the case of trimeric PS I, both radii are equal to about 110 Å. The latter model can be shown to accommodate three elliptical cylinders equal to those describing monomeric PS I. A structure reconstitution also reveals that the protein-detergent complexes are larger than their respective crystal structures. The reconstituted structures are larger by about 20 Å mainly in the region of the hydrophobic surfaces of the monomeric and trimeric PS I complexes. This seeming contradiction can be resolved by the addition of a detergent belt constituted by a monolayer of dodecyl-β-D-maltoside molecules. Assuming a closest possible packing, a number of roughly 1024 and 1472 detergent molecules can be determined for monomeric and trimeric PS I, respectively. Taking the monolayer of detergent molecules into account, the solution structure can be almost perfectly modeled by the crystal structures of monomeric and trimeric PS I.
Humboldt Universität zu Berlin Philipp Str 13 10115 Berlin Germany
Institute of Physics University of Tartu Wilhelm Ostwaldi 1 50411 Tartu Estonia
Zobrazit více v PubMed
Methods Enzymol. 1990;182:239-53 PubMed
J Phys Chem B. 2007 Apr 26;111(16):4211-9 PubMed
J Phys Chem B. 2008 Oct 23;112(42):13349-54 PubMed
Elife. 2015 Jun 15;4:e07433 PubMed
Elife. 2013 Jan 01;3:e01496 PubMed
Arch Biochem Biophys. 2014 May 15;550-551:50-7 PubMed
Biochim Biophys Acta. 2000 Nov 23;1508(1-2):86-111 PubMed
Biochemistry. 2014 Apr 15;53(14):2295-306 PubMed
Structure. 1995 Oct 15;3(10):1051-9 PubMed
FEBS Lett. 2015 Sep 14;589(19 Pt A):2570-7 PubMed
Biochemistry. 1997 Jun 17;36(24):7503-12 PubMed
J Biol Chem. 2013 Feb 1;288(5):3632-40 PubMed
Nature. 2011 May 5;473(7345):55-60 PubMed
Sci Rep. 2012;2:234 PubMed
Nature. 2001 Jun 21;411(6840):909-17 PubMed
Biochim Biophys Acta. 2016 Jan;1857(1):107-14 PubMed
Structure. 2014 Nov 4;22(11):1607-15 PubMed
Annu Rev Plant Biol. 2006;57:521-65 PubMed
J Biol Chem. 1993 Sep 5;268(25):18659-72 PubMed
Biochim Biophys Acta. 2004 Nov 3;1666(1-2):105-17 PubMed
Langmuir. 2015 Sep 29;31(38):10590-8 PubMed
Nature. 2003 Dec 11;426(6967):630-5 PubMed
Biochem J. 2011 Jun 1;436(2):225-30 PubMed
Protein Sci. 2010 Apr;19(4):642-57 PubMed
J Appl Crystallogr. 2009 Apr 1;42(Pt 2):342-346 PubMed
Biochim Biophys Acta. 2005 Jan 7;1706(1-2):147-57 PubMed
J Mol Biol. 2011 Mar 18;407(1):125-37 PubMed
J Phys Chem B. 2009 Dec 24;113(51):16377-83 PubMed
Adv Mater. 2014 Nov 5;26(41):7064-9 PubMed
Biochemistry. 2010 Jun 15;49(23):4740-51 PubMed
Biochim Biophys Acta. 2008 Oct;1778(10):2298-307 PubMed
Photosynth Res. 2009 Nov-Dec;102(2-3):281-93 PubMed
Photosynth Res. 2005 Jun;84(1-3):317-23 PubMed
Photosynth Res. 2012 Mar;111(1-2):205-17 PubMed
Biochim Biophys Acta. 2012 Aug;1817(8):1213-9 PubMed
Nanoscale. 2016 May 19;8(20):10695-705 PubMed