Solution structure of monomeric and trimeric photosystem I of Thermosynechococcus elongatus investigated by small-angle X-ray scattering

. 2017 Sep ; 133 (1-3) : 163-173. [epub] 20170303

Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28258466
Odkazy

PubMed 28258466
DOI 10.1007/s11120-017-0342-6
PII: 10.1007/s11120-017-0342-6
Knihovny.cz E-zdroje

The structure of monomeric and trimeric photosystem I (PS I) of Thermosynechococcus elongatus BP1 (T. elongatus) was investigated by small-angle X-ray scattering (SAXS). The scattering data reveal that the protein-detergent complexes possess radii of gyration of 58 and 78 Å in the cases of monomeric and trimeric PS I, respectively. The results also show that the samples are monodisperse, virtually free of aggregation, and contain empty detergent micelles. The shape of the protein-detergent complexes can be well approximated by elliptical cylinders with a height of 78 Å. Monomeric PS I in buffer solution exhibits minor and major radii of the elliptical cylinder of about 50 and 85 Å, respectively. In the case of trimeric PS I, both radii are equal to about 110 Å. The latter model can be shown to accommodate three elliptical cylinders equal to those describing monomeric PS I. A structure reconstitution also reveals that the protein-detergent complexes are larger than their respective crystal structures. The reconstituted structures are larger by about 20 Å mainly in the region of the hydrophobic surfaces of the monomeric and trimeric PS I complexes. This seeming contradiction can be resolved by the addition of a detergent belt constituted by a monolayer of dodecyl-β-D-maltoside molecules. Assuming a closest possible packing, a number of roughly 1024 and 1472 detergent molecules can be determined for monomeric and trimeric PS I, respectively. Taking the monolayer of detergent molecules into account, the solution structure can be almost perfectly modeled by the crystal structures of monomeric and trimeric PS I.

Zobrazit více v PubMed

Methods Enzymol. 1990;182:239-53 PubMed

J Phys Chem B. 2007 Apr 26;111(16):4211-9 PubMed

J Phys Chem B. 2008 Oct 23;112(42):13349-54 PubMed

Elife. 2015 Jun 15;4:e07433 PubMed

Elife. 2013 Jan 01;3:e01496 PubMed

Arch Biochem Biophys. 2014 May 15;550-551:50-7 PubMed

Biochim Biophys Acta. 2000 Nov 23;1508(1-2):86-111 PubMed

Biochemistry. 2014 Apr 15;53(14):2295-306 PubMed

Structure. 1995 Oct 15;3(10):1051-9 PubMed

FEBS Lett. 2015 Sep 14;589(19 Pt A):2570-7 PubMed

Biochemistry. 1997 Jun 17;36(24):7503-12 PubMed

J Biol Chem. 2013 Feb 1;288(5):3632-40 PubMed

Nature. 2011 May 5;473(7345):55-60 PubMed

Sci Rep. 2012;2:234 PubMed

Nature. 2001 Jun 21;411(6840):909-17 PubMed

Biochim Biophys Acta. 2016 Jan;1857(1):107-14 PubMed

Structure. 2014 Nov 4;22(11):1607-15 PubMed

Annu Rev Plant Biol. 2006;57:521-65 PubMed

J Biol Chem. 1993 Sep 5;268(25):18659-72 PubMed

Biochim Biophys Acta. 2004 Nov 3;1666(1-2):105-17 PubMed

Langmuir. 2015 Sep 29;31(38):10590-8 PubMed

Nature. 2003 Dec 11;426(6967):630-5 PubMed

Biochem J. 2011 Jun 1;436(2):225-30 PubMed

Protein Sci. 2010 Apr;19(4):642-57 PubMed

J Appl Crystallogr. 2009 Apr 1;42(Pt 2):342-346 PubMed

Biochim Biophys Acta. 2005 Jan 7;1706(1-2):147-57 PubMed

J Mol Biol. 2011 Mar 18;407(1):125-37 PubMed

J Phys Chem B. 2009 Dec 24;113(51):16377-83 PubMed

Adv Mater. 2014 Nov 5;26(41):7064-9 PubMed

Biochemistry. 2010 Jun 15;49(23):4740-51 PubMed

Biochim Biophys Acta. 2008 Oct;1778(10):2298-307 PubMed

Photosynth Res. 2009 Nov-Dec;102(2-3):281-93 PubMed

Photosynth Res. 2005 Jun;84(1-3):317-23 PubMed

Photosynth Res. 2012 Mar;111(1-2):205-17 PubMed

Biochim Biophys Acta. 2012 Aug;1817(8):1213-9 PubMed

Nanoscale. 2016 May 19;8(20):10695-705 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...