Insights into the binding behavior of native and non-native cytochromes to photosystem I from Thermosynechococcus elongatus
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
Grantová podpora
Howard Hughes Medical Institute - United States
PubMed
29695502
PubMed Central
PMC5995507
DOI
10.1074/jbc.ra117.000953
PII: S0021-9258(20)37219-7
Knihovny.cz E-zdroje
- Klíčová slova
- complex, crystallography, cytochrome c, docking, photosynthesis, photosystem I,
- MeSH
- bakteriální proteiny chemie metabolismus MeSH
- cytochromy c chemie metabolismus MeSH
- cytochromy c6 chemie metabolismus MeSH
- fotosystém I (proteinový komplex) chemie metabolismus MeSH
- koně MeSH
- osmolární koncentrace MeSH
- simulace molekulového dockingu MeSH
- sinice chemie metabolismus MeSH
- statická elektřina MeSH
- vazebná místa MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- bakteriální proteiny MeSH
- cytochromy c MeSH
- cytochromy c6 MeSH
- fotosystém I (proteinový komplex) MeSH
The binding of photosystem I (PS I) from Thermosynechococcus elongatus to the native cytochrome (cyt) c6 and cyt c from horse heart (cyt cHH) was analyzed by oxygen consumption measurements, isothermal titration calorimetry (ITC), and rigid body docking combined with electrostatic computations of binding energies. Although PS I has a higher affinity for cyt cHH than for cyt c6, the influence of ionic strength and pH on binding is different in the two cases. ITC and theoretical computations revealed the existence of unspecific binding sites for cyt cHH besides one specific binding site close to P700 Binding to PS I was found to be the same for reduced and oxidized cyt cHH Based on this information, suitable conditions for cocrystallization of cyt cHH with PS I were found, resulting in crystals with a PS I:cyt cHH ratio of 1:1. A crystal structure at 3.4-Å resolution was obtained, but cyt cHH cannot be identified in the electron density map because of unspecific binding sites and/or high flexibility at the specific binding site. Modeling the binding of cyt c6 to PS I revealed a specific binding site where the distance and orientation of cyt c6 relative to P700 are comparable with cyt c2 from purple bacteria relative to P870 This work provides new insights into the binding modes of different cytochromes to PS I, thus facilitating steps toward solving the PS I-cyt c costructure and a more detailed understanding of natural electron transport processes.
Zobrazit více v PubMed
Stieger K. R., Feifel S. C., Lokstein H., Hejazi M., Zouni A., and Lisdat F. (2016) Biohybrid architectures for efficient light-to-current conversion based on photosystem I within scalable 3D mesoporous electrodes. J. Mater. Chem. A 4, 17009–17017 10.1039/C6TA07141D DOI
Stieger K. R., Ciornii D., Kölsch A., Hejazi M., Lokstein H., Feifel S. C., Zouni A., and Lisdat F. (2016) Engineering of supramolecular photoactive protein architectures: the defined co-assembly of photosystem I and cytochrome c using a nanoscaled DNA-matrix. Nanoscale 8, 10695–10705 10.1039/C6NR00097E PubMed DOI
Lubner C. E., Applegate A. M., Knörzer P., Ganago A., Bryant D. A., Happe T., and Golbeck J. H. (2011) Solar hydrogen-producing bionanodevice outperforms natural photosynthesis. Proc. Natl. Acad. Sci. 108, 20988–20991 10.1073/pnas.1114660108 PubMed DOI PMC
Nowaczyk M. M., and Plumeré N. (2016) Short circuit at the chlorophyll. Nat. Chem. Biol. 12, 990–991 10.1038/nchembio.2240 PubMed DOI
Jordan P., Fromme P., Witt H. T., Klukas O., Saenger W., and Krauss N. (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature 411, 909–917 10.1038/35082000 PubMed DOI
Mazor Y., Borovikova A., Caspy I., and Nelson N. (2017) Structure of the plant photosystem I supercomplex at 2.6 Å resolution. Nat. Plants 3, 17014 10.1038/nplants.2017.14 PubMed DOI
Guergova-Kuras M., Boudreaux B., Joliot A., Joliot P., and Redding K. (2001) Evidence for two active branches for electron transfer in photosystem I. Proc. Natl. Acad. Sci. U.S.A. 98, 4437–4442 10.1073/pnas.081078898 PubMed DOI PMC
Wood P. M. (1978) Interchangeable copper and iron proteins in algal photosynthesis. Eur. J. Biochem. 87, 9–19 10.1111/j.1432-1033.1978.tb12346.x PubMed DOI
Nakamura Y., Kaneko T., Sato S., Ikeuchi M., Katoh H., Sasamoto S., Watanabe A., Iriguchi M., Kawashima K., Kimura T., Kishida Y., Kiyokawa C., Kohara M., Matsumoto M., Matsuno A., et al. (2002) Complete genome structure of the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1. DNA Res. 9, 123–130 10.1093/dnares/9.4.123 PubMed DOI
Sommer F., Drepper F., and Hippler M. (2002) The luminal helix l of PsaB is essential for recognition of plastocyanin or cytochrome c6 and fast electron transfer to photosystem I in Chlamydomonas reinhardtii. J. Biol. Chem. 277, 6573–6581 10.1074/jbc.M110633200 PubMed DOI
Hervás M., De la Rosa M., and Tollin G. (1992) A comparative laser-flash absorption spectroscopy study of algal plastocyanin and cytochrome c552 photooxidation by photosystem I particles from spinach. Eur. J. Biochem. 203, 115–120 10.1111/j.1432-1033.1992.tb19835.x PubMed DOI
Hervás M., Navarro J. A., Díaz A., Bottin H., and De la Rosa M. A. (1995) Laser-flash kinetic analysis of the fast electron transfer from plastocyanin and cytochrome c6 to photosystem I. Experimental evidence on the evolution of the reaction mechanism. Biochemistry 34, 11321–11326 10.1021/bi00036a004 PubMed DOI
Haehnel W., Ratajczak R., and Robenek H. (1989) Lateral distribution and diffusion of plastocyanin in chloroplast thylakoids. J. Cell Biol. 108, 1397–1405 10.1083/jcb.108.4.1397 PubMed DOI PMC
Díaz-Moreno I., Díaz-Quintana A., Molina-Heredia F. P., Nieto P. M., Hansson O., De la Rosa M.A., and Karlsson B. G. (2005) NMR analysis of the transient complex between membrane photosystem I and soluble cytochrome c6. J. Biol. Chem. 280, 7925–7931 10.1074/jbc.M412422200 PubMed DOI
Utschig L. M., Silver S. C., Mulfort K. L., and Tiede D. M. (2011) Nature-driven photochemistry for catalytic solar hydrogen production: a photosystem I–transition metal catalyst hybrid. J. Am. Chem. Soc. 133, 16334–16337 10.1021/ja206012r PubMed DOI
Stieger K. R., Feifel S. C., Lokstein H., and Lisdat F. (2014) Advanced unidirectional photocurrent generation via cytochrome c as reaction partner for directed assembly of photosystem I. Phys. Chem. Chem. Phys. 16, 15667–15674 10.1039/C4CP00935E PubMed DOI
Golub M., Hejazi M., Kölsch A., Lokstein H., Wieland D. C. F., Zouni A., and Pieper J. (2017) Solution structure of monomeric and trimeric photosystem I of Thermosynechococcus elongatus investigated by small-angle X-ray scattering. Photosynth. Res. 133, 163–173 10.1007/s11120-017-0342-6 PubMed DOI
Mukherjee D., May M., and Khomami B. (2011) Detergent–protein interactions in aqueous buffer suspensions of Photosystem I (PS I). J. Colloid Interface Sci. 358, 477–484 10.1016/j.jcis.2011.03.070 PubMed DOI
El-Mohsnawy E., Kopczak M. J., Schlodder E., Nowaczyk M., Meyer H. E., Warscheid B., Karapetyan N. V., and Rögner M. (2010) Structure and function of intact photosystem 1 monomers from the cyanobacterium Thermosynechococcus elongatus. Biochemistry 49, 4740–4751 10.1021/bi901807p PubMed DOI
Kramer D. M., Sacksteder C. A., and Cruz J. A. (1999) How acidic is the lumen? Photosynth. Res. 60, 151–163 10.1023/A:1006212014787 DOI
Krauβ N., Schubert W.-D., Klukas O., Fromme P., Witt H. T., and Saenger W. (1996) Photosystem I at 4 Å resolution represents the first structural model of a joint photosynthetic reaction centre and core antenna system. Nat. Struct. Mol. Biol. 3, 965–973 10.1038/nsb1196-965 PubMed DOI
Fromme P., and Witt H. T. (1998) Improved isolation and crystallization of photosystem I for structural analysis. Biochim. Biophys. Acta 1365, 175–184 10.1016/S0005-2728(98)00059-0 DOI
Gabb H. A., Jackson R. M., and Sternberg M. J. (1997) Modelling protein docking using shape complementarity, electrostatics and biochemical information1. J. Mol. Biol. 272, 106–120 10.1006/jmbi.1997.1203 PubMed DOI
Cheng T. M., Blundell T. L., and Fernandez-Recio J. (2007) pyDock: electrostatics and desolvation for effective scoring of rigid-body protein–protein docking. Proteins 68, 503–515 10.1002/prot.21419 PubMed DOI
Hatanaka H., Sonoike K., Hirano M., and Katoh S. (1993) Small subunits of photosystem I reaction center complexes from Synechococcus elongatus. I. Is the psaF gene product required for oxidation of cytochrome c-553? Biochim. Biophys. Acta 1141, 45–51 10.1016/0005-2728(93)90187-K PubMed DOI
Nguyen K., Vaughn M., Frymier P., and Bruce B. D. (2017) In vitro kinetics of P700+ reduction of Thermosynechococcus elongatus trimeric photosystem I complexes by recombinant cytochrome c6 using a Joliot-type LED spectrophotometer. Photosynth. Res. 131, 79–91 10.1007/s11120-016-0300-8 PubMed DOI
Bjellqvist B., Hughes G. J., Pasquali C., Paquet N., Ravier F., Sanchez J.-C., Frutiger S., and Hochstrasser D. (1993) The focusing positions of polypeptides in immobilized pH gradients can be predicted from their amino acid sequences. Electrophoresis 14, 1023–1031 10.1002/elps.11501401163 PubMed DOI
Malmgren L., Olsson Y., Olsson T., and Kristensson K. (1978) Uptake and retrograde axonal transport of various exogenous macromolecules in normal and crushed hypoglossal nerves. Brain Res. 153, 477–493 10.1016/0006-8993(78)90333-5 PubMed DOI
Drepper F., Hippler M., Nitschke W., and Haehnel W. (1996) Binding dynamics and electron transfer between plastocyanin and photosystem I. Biochemistry 35, 1282–1295 10.1021/bi951471e PubMed DOI
Zygadlo A., Jensen P. E., Leister D., and Scheller H. V. (2005) Photosystem I lacking the PSI-G subunit has a higher affinity for plastocyanin and is sensitive to photodamage. Biochim. Biophys. Acta 1708, 154–163 10.1016/j.bbabio.2005.02.003 PubMed DOI
Bernal-Bayard P., Pallara C., Carmen Castell M., Molina-Heredia F. P., Fernández-Recio J., Hervás M., and Navarro J. A. (2015) Interaction of photosystem I from Phaeodactylum tricornutum with plastocyanins as compared with its native cytochrome c6: reunion with a lost donor. Biochim. Biophys. Acta 1847, 1549–1559 10.1016/j.bbabio.2015.09.006 PubMed DOI
van Thor J. J., Geerlings T. H., Matthijs H. C., and Hellingwerf K. J. (1999) Kinetic evidence for the PsaE-dependent transient ternary complex photosystem I/ferredoxin/ferredoxin:NADP+ reductase in a cyanobacterium. Biochemistry 38, 12735–12746 10.1021/bi9903502 PubMed DOI
Moser C. C., and Dutton P. L. (1988) Cytochrome c and c2 binding dynamics and electron transfer with photosynthetic reaction center protein and other integral membrane redox proteins. Biochemistry 27, 2450–2461 10.1021/bi00407a031 PubMed DOI
Axelrod H. L., Abresch E. C., Okamura M. Y., Yeh A. P., Rees D. C., and Feher G. (2002) X-ray structure determination of the cytochrome c2: reaction center electron transfer complex from Rhodobacter sphaeroides. J. Mol. Biol. 319, 501–515 10.1016/S0022-2836(02)00168-7 PubMed DOI
Pettigrew G. W., Goodhew C. F., Cooper A., Nutley M., Jumel K., and Harding S. E. (2003) The electron transfer complexes of cytochrome c peroxidase from Paracoccus denitrificans. Biochemistry 42, 2046–2055 10.1021/bi027125w PubMed DOI
Shimada S., Shinzawa-Itoh K., Baba J., Aoe S., Shimada A., Yamashita E., Kang J., Tateno M., Yoshikawa S., and Tsukihara T. (2016) Complex structure of cytochrome c–cytochrome c oxidase reveals a novel protein–protein interaction mode. EMBO J. 10.15252/embj.201695021 PubMed DOI PMC
Poulos T. L., Sheriff S., and Howard A. J. (1987) Cocrystals of yeast cytochrome c peroxidase and horse heart cytochrome c. J. Biol. Chem. 262, 13881–13884 PubMed
Pelletier H., and Kraut J. (1992) Crystal structure of a complex between electron transfer partners, cytochrome c peroxidase and cytochrome c. Science 258, 1748–1755 10.1126/science.1334573 PubMed DOI
Sommer F., Drepper F., Haehnel W., and Hippler M. (2004) The hydrophobic recognition site formed by residues PsaA-Trp651 and PsaB-Trp627 of photosystem I in Chlamydomonas reinhardtii confers distinct selectivity for binding of plastocyanin and cytochrome c6. J. Biol. Chem. 279, 20009–20017 10.1074/jbc.M313986200 PubMed DOI
Navarro J. A., Hervás M., Sun J., De la Cerda B., Chitnis P. R., and De la Rosa M. A. (2000) Negatively charged residues in the H loop of PsaB subunit in photosystem I from Synechocystis sp. PCC 6803 appear to be responsible for electrostatic repulsions with plastocyanin. Photosynth. Res. 65, 63–68 10.1023/A:1006404621724 PubMed DOI
Proux-Delrouyre V., Demaille C., Leibl W., Sétif P., Bottin H., and Bourdillon C. (2003) Electrocatalytic investigation of light-induced electron transfer between cytochrome c6 and photosystem I. J. Am. Chem. Soc. 125, 13686–13692 10.1021/ja0363819 PubMed DOI
Hervás M., Ortega J. M., Navarro J. A., De la Rosa M. A., and Bottin H. (1994) Laser flash kinetic analysis of Synechocystis PCC 6803 cytochrome c6 and plastocyanin oxidation by photosystem I. Biochim. Biophys. Acta 1184, 235–241 10.1016/0005-2728(94)90228-3 DOI
Fischer W. W., Hemp J., and Johnson J. E. (2016) Evolution of oxygenic photosynthesis. Annu. Rev. Earth Planet. Sci. 44, 647–683 10.1146/annurev-earth-060313-054810 DOI
Arslan E., Schulz H., Zufferey R., Künzler P., and Thöny-Meyer L. (1998) Overproduction of the Bradyrhizobium japonicum c-type cytochrome subunits of the cbb3 oxidase in Escherichia coli. Biochem. Biophys. Res. Commun. 251, 744–747 10.1006/bbrc.1998.9549 PubMed DOI
Kern J., Loll B., Lüneberg C., DiFiore D., Biesiadka J., Irrgang K.-D., and Zouni A. (2005) Purification, characterisation and crystallisation of photosystem II from Thermosynechococcus elongatus cultivated in a new type of photobioreactor. Biochim. Biophys. Acta 1706, 147–157 10.1016/j.bbabio.2004.10.007 PubMed DOI
Müh F., and Zouni A. (2005) Extinction coefficients and critical solubilisation concentrations of photosystems I and II from Thermosynechococcus elongatus. Biochim. Biophys. Acta 1708, 219–228 10.1016/j.bbabio.2005.03.005 PubMed DOI
van Gelder B. F., and Slater E. C. (1962) The extinction coefficient of cytochrome c. Biochim. Biophys. Acta 58, 593–595 10.1016/0006-3002(62)90073-2 PubMed DOI
Laemmli U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 10.1038/227680a0 PubMed DOI
Wittig I., Braun H.-P., and Schägger H. (2006) Blue native PAGE. Nat. Protoc. 1, 418–428 10.1038/nprot.2006.62 PubMed DOI
Keller S., Vargas C., Zhao H., Piszczek G., Brautigam C. A., and Schuck P. (2012) High-precision isothermal titration calorimetry with automated peak-shape analysis. Anal. Chem. 84, 5066–5073 10.1021/ac3007522 PubMed DOI PMC
Scheuermann T. H., and Brautigam C. A. (2015) High-precision, automated integration of multiple isothermal titration calorimetric thermograms: new features of NITPIC. Methods 76, 87–98 10.1016/j.ymeth.2014.11.024 PubMed DOI PMC
Mueller U., Darowski N., Fuchs M. R., Förster R., Hellmig M., Paithankar K. S., Pühringer S., Steffien M., Zocher G., and Weiss M. S. (2012) Facilities for macromolecular crystallography at the Helmholtz-Zentrum Berlin. J. Synchrotron Radiat. 19, 442–449 10.1107/S0909049512006395 PubMed DOI PMC
Kabsch W. (2010) XDS. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 10.1107/S0907444909047337 PubMed DOI PMC
Krug M., Weiss M. S., Heinemann U., and Mueller U. (2012) XDSAPP: a graphical user interface for the convenient processing of diffraction data using XDS. J. Appl. Crystallogr. 45, 568–572 10.1107/S0021889812011715 DOI
Murshudov G. N., Skubák P., Lebedev A. A., Pannu N. S., Steiner R. A., Nicholls R. A., Winn M. D., Long F., and Vagin A. A. (2011) REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D Biol. Crystallogr. 67, 355–367 10.1107/S0907444911001314 PubMed DOI PMC
Emsley P., Lohkamp B., Scott W. G., and Cowtan K. (2010) Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 10.1107/S0907444910007493 PubMed DOI PMC
Jo S., Kim T., Iyer V. G., and Im W. (2008) CHARMM-GUI: a web-based graphical user interface for CHARMM. J. Comput. Chem. 29, 1859–1865 10.1002/jcc.20945 PubMed DOI
Baker N. A., Sept D., Joseph S., Holst M. J., and McCammon J. A. (2001) Electrostatics of nanosystems: application to microtubules and the ribosome. Proc. Natl. Acad. Sci. U.S.A. 98, 10037–10041 10.1073/pnas.181342398 PubMed DOI PMC
Dolinsky T. J., Nielsen J. E., McCammon J. A., and Baker N. A. (2004) PDB2PQR: an automated pipeline for the setup of Poisson–Boltzmann electrostatics calculations. Nucleic Acids Res. 32, W665–W667 10.1093/nar/gkh381 PubMed DOI PMC
PDB
1l9b, 1jb0, 1hrc, 1c6s