Polarization-controlled optimal scatter suppression in transient absorption spectroscopy

. 2017 Mar 06 ; 7 () : 43484. [epub] 20170306

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid28262765

Ultrafast transient absorption spectroscopy is a powerful technique to study fast photo-induced processes, such as electron, proton and energy transfer, isomerization and molecular dynamics, in a diverse range of samples, including solid state materials and proteins. Many such experiments suffer from signal distortion by scattered excitation light, in particular close to the excitation (pump) frequency. Scattered light can be effectively suppressed by a polarizer oriented perpendicular to the excitation polarization and positioned behind the sample in the optical path of the probe beam. However, this introduces anisotropic polarization contributions into the recorded signal. We present an approach based on setting specific polarizations of the pump and probe pulses, combined with a polarizer behind the sample. Together, this controls the signal-to-scatter ratio (SSR), while maintaining isotropic signal. We present SSR for the full range of polarizations and analytically derive the optimal configuration at angles of 40.5° between probe and pump and of 66.9° between polarizer and pump polarizations. This improves SSR by (or compared to polarizer parallel to probe). The calculations are validated by transient absorption experiments on the common fluorescent dye Rhodamine B. This approach provides a simple method to considerably improve the SSR in transient absorption spectroscopy.

Zobrazit více v PubMed

Sundström V. Femtobiology. Annu. Rev. Phys. Chem. 59, 53–77 (2008). PubMed

Mathes T., van Stokkum I. H. M. & Kennis J. T. M. In Flavins and Flavoproteins: Methods and Protocols (eds Weber S. & Schleicher E.) 401–442, doi: 10.1007/978-1-4939-0452-5_16 (Springer New York, 2014). DOI

Rullière C., Amand T. & Marie X. In Femtosecond Laser Pulses - Principles and Experiments (ed. Rullière C.) 223–281, doi: 10.1007/0-387-26674-7_8 (Springer-Verlag: New York,, 2005). DOI

Wan C., Fiebig T., Schiemann O., Barton J. K. & Zewail A. H. Femtosecond direct observation of charge transfer between bases in DNA. Proc. Natl. Acad. Sci. USA 97, 14052–14055 (2000). PubMed PMC

Kesti T. J. et al.. Exciplex Intermediates in Photoinduced Electron Transfer of Porphyrin–Fullerene Dyads. J. Am. Chem. Soc. 124, 8067–8077 (2002). PubMed

Holzwarth A. R. et al.. Kinetics and mechanism of electron transfer in intact photosystem II and in the isolated reaction center: pheophytin is the primary electron acceptor. Proc. Natl. Acad. Sci. USA 103, 6895–6900 (2006). PubMed PMC

Müller M. G. et al.. Singlet Energy Dissipation in the Photosystem II Light- Harvesting Complex Does Not Involve Energy Transfer to Carotenoids. ChemPhysChem 11, 1289–1296 (2010). PubMed

Polívka T. & Sundström V. Ultrafast dynamics of carotenoid excited States-from solution to natural and artificial systems. Chem. Rev. 104, 2021–71 (2004). PubMed

Fuciman M. et al.. Role of Xanthophylls in Light Harvesting in Green Plants: A Spectroscopic Investigation of Mutant LHCII and Lhcb Pigment-Protein Complexes. J. Phys. Chem. B 116, 3834–3849 (2012). PubMed

Walla P. J., Linden P. A., Ohta K. & Fleming G. R. Excited-State Kinetics of the Carotenoid S1 State in LHC II and Two-Photon Excitation Spectra of Lutein and -Carotene in Solution: Efficient Car S1 to Chl Electronic Energy Transfer via Hot S1 States? J. Phys. Chem. A 106, 1909–1916 (2002).

Ravensbergen J. et al.. Unraveling the Carrier Dynamics of BiVO4: A Femtosecond to Microsecond Transient Absorption Study. J. Phys. Chem. C 118, 27793–27800 (2014).

van Oort B., van Grondelle R. & van Stokkum I. H. M. A Hidden State in Light-Harvesting Complex II – Revealed by Multipulse Spectroscopy. J. Phys. Chem. B 119, 5184–5193 (2015). PubMed PMC

Gradinaru C. C. et al.. An unusual pathway of excitation energy deactivation in carotenoids: singlet-to-triplet conversion on an ultrafast timescale in a photosynthetic antenna. Proc. Natl. Acad. Sci. USA 98, 2364–2369 (2001). PubMed PMC

Ruban A. V. et al.. Identification of a mechanism of photoprotective energy dissipation in higher plants. Nature 450, 575–579 (2007). PubMed

Westlake B. C. et al.. Concerted electron-proton transfer in the optical excitation of hydrogen-bonded dyes. Proc. Natl. Acad. Sci. USA 108, 8554–8558 (2011). PubMed PMC

Kennis J. T. M. et al.. Uncovering the hidden ground state of green fluorescent protein. Proc. Natl. Acad. Sci. USA 101, 17988–17993 (2004). PubMed PMC

Polli D. et al.. Conical intersection dynamics of the primary photoisomerization event in vision. Nature 467, 440–443 (2010). PubMed

Schaniel D., Nicoul M. & Woike T. Ultrafast reversible ligand isomerisation in Na2[Fe(CN)5NO] x 2H2O single crystals. Phys. Chem. Chem. Phys. 12, 9029–9033 (2010). PubMed

Liu Z. et al.. Dynamics and mechanism of cyclobutane pyrimidine dimer repair by DNA photolyase. Proc. Natl. Acad. Sci. USA 108, 14831–14836 (2011). PubMed PMC

Li J. et al.. Dynamics and mechanism of repair of ultraviolet-induced (6-4) photoproduct by photolyase. Nature 466, 887–890 (2010). PubMed PMC

Zhu J., Shcherbakova D. M., Hontani Y., Verkhusha V. V. & Kennis J. T. M. Ultrafast excited-state dynamics and fluorescence deactivation of near-infrared fluorescent proteins engineered from bacteriophytochromes. Sci. Rep. 5, 12840 (2015). PubMed PMC

Tan H.-S., Piletic I. R. & Fayer M. D. Polarization selective spectroscopy experiments: methodology and pitfalls. J. Opt. Soc. Am. B 22, 2009 (2005).

Kloz M., Weissenborn J., Polivka T., Frank H. A. & Kennis J. T. M. Spectral Watermarking in Femtosecond Stimulated Raman spectroscopy: resolving the nature of the carotenoid S* state. Phys. Chem. Chem. Phys. 18, 14619–14628 (2016). PubMed

Brixner T. et al.. Two-dimensional spectroscopy of electronic couplings in photosynthesis. Nature 434, 625–628 (2005). PubMed

Mukamel S. Principles of nonlinear spectroscopy. (Oxford University Press, 1995).

Hamm P. & Zanni M. Concepts and Methods of 2D Infrared Spectroscopy. (Cambridge University Press, 2011).

Schott S., Steinbacher A., Buback J., Nuernberger P. & Brixner T. Generalized magic angle for time-resolved spectroscopy with laser pulses of arbitrary ellipticity. J. Phys. B At. Mol. Opt. Phys. 47, 124014 (2014).

Smirl A. L., Clark J. B., Van Stryland E. W. & Russel B. R. Population and rotational kinetics of the rhodamine B monomer and dimer: Picosecond transient spectrometry. J. Chem. Phys. 77, 631–640 (1982).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...