Frequency-phase analysis of resting-state functional MRI
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28272522
PubMed Central
PMC5341062
DOI
10.1038/srep43743
PII: srep43743
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
We describe an analysis method that characterizes the correlation between coupled time-series functions by their frequencies and phases. It provides a unified framework for simultaneous assessment of frequency and latency of a coupled time-series. The analysis is demonstrated on resting-state functional MRI data of 34 healthy subjects. Interactions between fMRI time-series are represented by cross-correlation (with time-lag) functions. A general linear model is used on the cross-correlation functions to obtain the frequencies and phase-differences of the original time-series. We define symmetric, antisymmetric and asymmetric cross-correlation functions that correspond respectively to in-phase, 90° out-of-phase and any phase difference between a pair of time-series, where the last two were never introduced before. Seed maps of the motor system were calculated to demonstrate the strength and capabilities of the analysis. Unique types of functional connections, their dominant frequencies and phase-differences have been identified. The relation between phase-differences and time-delays is shown. The phase-differences are speculated to inform transfer-time and/or to reflect a difference in the hemodynamic response between regions that are modulated by neurotransmitters concentration. The analysis can be used with any coupled functions in many disciplines including electrophysiology, EEG or MEG in neuroscience.
Department of Radiology Na Homolce Hospital Prague Czech Republic
Edmond and Lily Safra Center for Brain Sciences The Hebrew University of Jerusalem Jerusalem Israel
Zobrazit více v PubMed
Friston K. J. Functional and effective connectivity: a review. Brain Connect 1, 13–36, doi: 10.1089/brain.2011.0008 (2011). PubMed DOI
Friston K. J., Harrison L. & Penny W. Dynamic causal modelling. NeuroImage 19, 1273–1302 (2003). PubMed
McIntosh. A. R. & Gonzalez-Lima F. Structural equation modeling and its application to network analysis in functional brain imaging. Human brain mapping 2, 2–22 (1994).
Buckner R. L., Andrews-Hanna J. R. & Schacter D. L. The brain’s default network: anatomy, function, and relevance to disease. Annals of the New York Academy of Sciences 1124, 1–38, doi: 10.1196/annals.1440.011 (2008). PubMed DOI
Fox M. D. & Raichle M. E. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8, 700–711 (2007). PubMed
Biswal B., Yetkin F. Z., Haughton V. M. & Hyde J. S. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34(4), 537–541 (1995). PubMed
Fox M. D. et al.. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proceedings of the National Academy of Sciences of the United States of America 102, 9673–9678 (2005). PubMed PMC
Greicius M. D., Krasnow B., Reiss A. L. & Menon V. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proceedings of the National Academy of Sciences of the United States of America 100, 253–258 (2003). PubMed PMC
Raichle M. E. et al.. A default mode of brain function. Proceedings of the National Academy of Sciences of the United States of America 98, 676–682 (2001). PubMed PMC
Deco G., Jirsa V. K. & McIntosh A. R. Emerging concepts for the dynamical organization of resting-state activity in the brain. Nat Rev Neurosci 12, 43–56 (2011). PubMed
Shehzad Z. et al.. The resting brain: unconstrained yet reliable. Cerebral cortex 19, 2209–2229, doi: 10.1093/cercor/bhn256 (2009). PubMed DOI PMC
Zuo X. N. et al.. Reliable intrinsic connectivity networks: test-retest evaluation using ICA and dual regression approach. NeuroImage 49, 2163–2177, doi: 10.1016/j.neuroimage.2009.10.080 (2010). PubMed DOI PMC
Hampson M., Driesen N. R., Skudlarski P., Gore J. C. & Constable R. T. Brain connectivity related to working memory performance. J Neurosci 26, 13338–13343, doi: 10.1523/JNEUROSCI.3408-06.2006 (2006). PubMed DOI PMC
Seeley W. W., Crawford R. K., Zhou J., Miller B. L. & Greicius M. D. Neurodegenerative diseases target large-scale human brain networks. Neuron 62, 42–52 (2009). PubMed PMC
Honey C. J., Kotter R., Breakspear M. & Sporns O. Network structure of cerebral cortex shapes functional connectivity on multiple time scales. Proceedings of the National Academy of Sciences of the United States of America 104, 10240–10245 (2007). PubMed PMC
Ghosh A., Rho Y., McIntosh A. R., Kotter R. & Jirsa V. K. Noise during rest enables the exploration of the brain’s dynamic repertoire. PLoS Comput Biol 4, e1000196 (2008). PubMed PMC
Deco G., Jirsa V., McIntosh A. R., Sporns O. & Kotter R. Key role of coupling, delay, and noise in resting brain fluctuations. Proceedings of the National Academy of Sciences of the United States of America 106, 10302–10307 (2009). PubMed PMC
Cordes D. et al.. Frequencies Contributing to Functional Connectivity in the Cerebral Cortex in “Resting-state” Data. Am J Neuroradiol 22, 1326–1333 (2001). PubMed PMC
Sun F. T., Miller L. M. & D’Esposito M. Measuring interregional functional connectivity using coherence and partial coherence analyses of fMRI data. NeuroImage 21, 647–658, doi: 10.1016/j.neuroimage.2003.09.056 (2004). PubMed DOI
Salvador R., Suckling J., Schwarzbauer C. & Bullmore E. Undirected graphs of frequency-dependent functional connectivity in whole brain networks. Philos Trans R Soc Lond B Biol Sci 360, 937–946, doi: 10.1098/rstb.2005.1645 (2005). PubMed DOI PMC
Thirion B., Dodel S. & Poline J. B. Detection of signal synchronizations in resting-state fMRI datasets. NeuroImage 29, 321–327, doi: 10.1016/j.neuroimage.2005.06.054 (2006). PubMed DOI
Salvador R. et al.. Frequency based mutual information measures between clusters of brain regions in functional magnetic resonance imaging. NeuroImage 35, 83–88, doi: 10.1016/j.neuroimage.2006.12.001 (2007). PubMed DOI
Salvador R. et al.. A simple view of the brain through a frequency-specific functional connectivity measure. NeuroImage 39, 279–289, doi: 10.1016/j.neuroimage.2007.08.018 (2008). PubMed DOI
Goelman G. & Dan R. Multiple-region directed functional connectivity based on phase delays. Human brain mapping, doi: 10.1002/hbm.23460 (2016). PubMed DOI PMC
Handwerker D. A., Roopchansingh V., Gonzalez-Castillo J. & Bandettini P. A. Periodic changes in fMRI connectivity. NeuroImage 63, 1712–1719, doi: 10.1016/j.neuroimage.2012.06.078 (2012). PubMed DOI PMC
Hutchison R. M., Womelsdorf T., Gati J. S., Everling S. & Menon R. S. Resting-state networks show dynamic functional connectivity in awake humans and anesthetized macaques. Human brain mapping 34, 2154–2177, doi: 10.1002/hbm.22058 (2013). PubMed DOI PMC
Kiviniemi V. et al.. A sliding time-window ICA reveals spatial variability of the default mode network in time. Brain Connect 1, 339–347, doi: 10.1089/brain.2011.0036 (2011). PubMed DOI
Yaesoubi M., Allen E. A., Miller R. L. & Calhoun V. D. Dynamic coherence analysis of resting fMRI data to jointly capture state-based phase, frequency, and time-domain information. NeuroImage 120, 133–142, doi: 10.1016/j.neuroimage.2015.07.002 (2015). PubMed DOI PMC
Glerean E., Salmi J., Lahnakoski J. M., Jaaskelainen I. P. & Sams M. Functional magnetic resonance imaging phase synchronization as a measure of dynamic functional connectivity. Brain Connect 2, 91–101, doi: 10.1089/brain.2011.0068 (2012). PubMed DOI PMC
Liu X. & Duyn J. H. Time-varying functional network information extracted from brief instances of spontaneous brain activity. Proceedings of the National Academy of Sciences of the United States of America 110, 4392–4397, doi: 10.1073/pnas.1216856110 (2013). PubMed DOI PMC
Baria A. T., Baliki M. N., Parrish T. & Apkarian A. V. Anatomical and functional assemblies of brain BOLD oscillations. J Neurosci 31, 7910–7919, doi: 10.1523/JNEUROSCI.1296-11.2011 (2011). PubMed DOI PMC
Esposito F. et al.. Rhythm-specific modulation of the sensorimotor network in drug-naive patients with Parkinson’s disease by levodopa. Brain 136, 710–725, doi: 10.1093/brain/awt007 (2013). PubMed DOI
Devergnas A., Pittard D., Bliwise D. & Wichmann T. Relationship between oscillatory activity in the cortico-basal ganglia network and parkinsonism in MPTP-treated monkeys. Neurobiol Dis 68, 156–166, doi: 10.1016/j.nbd.2014.04.004 (2014). PubMed DOI PMC
Thompson W. H. & Fransson P. The frequency dimension of fMRI dynamic connectivity: Network connectivity, functional hubs and integration in the resting brain. NeuroImage 121, 227–242, doi: 10.1016/j.neuroimage.2015.07.022 (2015). PubMed DOI
Majeed W. et al.. Spatiotemporal dynamics of low frequency BOLD fluctuations in rats and humans. NeuroImage 54, 1140–1150, doi: 10.1016/j.neuroimage.2010.08.030 (2011). PubMed DOI PMC
Thompson G. J., Pan W. J., Magnuson M. E., Jaeger D. & Keilholz S. D. Quasi-periodic patterns (QPP): large-scale dynamics in resting state fMRI that correlate with local infraslow electrical activity. NeuroImage 84, 1018–1031, doi: 10.1016/j.neuroimage.2013.09.029 (2014). PubMed DOI PMC
Pan W. J. et al.. Broadband local field potentials correlate with spontaneous fluctuations in functional magnetic resonance imaging signals in the rat somatosensory cortex under isoflurane anesthesia. Brain Connect 1, 119–131, doi: 10.1089/brain.2011.0014 (2011). PubMed DOI PMC
Chang C. & Glover G. H. Time-frequency dynamics of resting-state brain connectivity measured with fMRI. NeuroImage 50, 81–98, doi: 10.1016/j.neuroimage.2009.12.011 (2010). PubMed DOI PMC
Torrence C. & Webster P. Interdecadal changes in the ENSO-Monsoon system. J Clim 12, 2679–2690 (1999).
Bianciardi M., Fukunaga M., van Gelderen P., de Zwart J. A. & Duyn J. H. Negative BOLD-fMRI signals in large cerebral veins. J Cereb Blood Flow Metab 31, 401–412 (2011). PubMed PMC
Mitra A., Snyder A. Z., Hacker C. D. & Raichle M. E. Lag structure in resting-state fMRI. J Neurophysiol 111, 2374–2391, doi: 10.1152/jn.00804.2013 (2014). PubMed DOI PMC
Mitra A., Snyder A. Z., Constantino J. N. & Raichle M. E. The Lag Structure of Intrinsic Activity is Focally Altered in High Functioning Adults with Autism. Cerebral cortex, doi: 10.1093/cercor/bhv294 (2015). PubMed DOI PMC
Mitra A., Snyder A. Z., Blazey T. & Raichle M. E. Lag threads organize the brain’s intrinsic activity. Proceedings of the National Academy of Sciences of the United States of America 112, E2235–2244, doi: 10.1073/pnas.1503960112 (2015). PubMed DOI PMC
Mitra A. et al.. Human cortical-hippocampal dialogue in wake and slow-wave sleep. Proceedings of the National Academy of Sciences of the United States of America 113, E6868–E6876, doi: 10.1073/pnas.1607289113 (2016). PubMed DOI PMC
Amemiya S., Takao H., Hanaoka S. & Ohtomo K. Global and structured waves of rs-fMRI signal identified as putative propagation of spontaneous neural activity. NeuroImage 133, 331–340, doi: 10.1016/j.neuroimage.2016.03.033 (2016). PubMed DOI
Lv Y. et al.. Identifying the perfusion deficit in acute stroke with resting-state functional magnetic resonance imaging. Annals of neurology 73, 136–140, doi: 10.1002/ana.23763 (2013). PubMed DOI
Amemiya S., Kunimatsu A., Saito N. & Ohtomo K. Cerebral hemodynamic impairment: assessment with resting-state functional MR imaging. Radiology 270, 548–555, doi: 10.1148/radiol.13130982 (2014). PubMed DOI
Christen T. et al.. Noncontrast mapping of arterial delay and functional connectivity using resting-state functional MRI: a study in Moyamoya patients. Journal of magnetic resonance imaging: JMRI 41, 424–430, doi: 10.1002/jmri.24558 (2015). PubMed DOI PMC
Garg R., Cecchi G. A. & Rao A. R. Full-brain auto-regressive modeling (FARM) using fMRI. NeuroImage 58, 416–441, doi: 10.1016/j.neuroimage.2011.02.074 (2011). PubMed DOI
Power J. D., Barnes K. A., Snyder A. Z., Schlaggar B. L. & Petersen S. E. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage 59, 2142–2154, doi: 10.1016/j.neuroimage.2011.10.018 (2012). PubMed DOI PMC
Power J. D., Plitt M., Laumann T. O. & Martin A. Sources and implications of whole-brain fMRI signals in humans. NeuroImage, doi: 10.1016/j.neuroimage.2016.09.038 (2016). PubMed DOI PMC
Zuo X. N. et al.. The oscillating brain: complex and reliable. NeuroImage 49, 1432–1445, doi: 10.1016/j.neuroimage.2009.09.037 (2010). PubMed DOI PMC
Goelman G., Gordon N. & Bonne O. Maximizing negative correlations in resting-state functional connectivity MRI by time-lag. PLoS One 9, e111554, doi: 10.1371/journal.pone.0111554 (2014). PubMed DOI PMC
Buxton R. B., Wong E. C. & Frank L. R. Dynamics of blood flow and oxygenation changes during brain activation: the balloon model. Magn Reson Med 39, 855–864 (1998). PubMed
Buxton R. B., Uludag K., Dubowitz D. J. & Liu T. T. Modeling the hemodynamic response to brain activation. NeuroImage 23 Suppl 1, S220–233 (2004). PubMed
Zong X., Kim T. & Kim S. G. Contributions of dynamic venous blood volume versus oxygenation level changes to BOLD fMRI. NeuroImage 60, 2238–2246, doi: 10.1016/j.neuroimage.2012.02.052 (2012). PubMed DOI PMC
Whitfield-Gabrieli S. & Nieto-Castanon A. Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect 2, 125–141, doi: 10.1089/brain.2012.0073 (2012). PubMed DOI
Fox M. D., Zhang D., Snyder A. Z. & Raichle M. E. The global signal and observed anticorrelated resting state brain networks. Journal of neurophysiology 101, 3270–3283 (2009). PubMed PMC
Murphy K., Birn R. M., Handwerker D. A., Jones T. B. & Bandettini P. A. The impact of global signal regression on resting state correlations: are anti-correlated networks introduced? NeuroImage 44, 893–905 (2009). PubMed PMC
Weissenbacher A. et al.. Correlations and anticorrelations in resting-state functional connectivity MRI: a quantitative comparison of preprocessing strategies. NeuroImage 47, 1408–1416 (2009). PubMed
Chai X. J., Castanon A. N., Ongur D. & Whitfield-Gabrieli S. Anticorrelations in resting state networks without global signal regression. NeuroImage 59, 1420–1428 (2011). PubMed PMC
Chao-Gan Y. & Yu-Feng Z. DPARSF: A MATLAB Toolbox for “Pipeline” Data Analysis of Resting-State fMRI. Front Syst Neurosci 4, 13, doi: 10.3389/fnsys.2010.00013 (2010). PubMed DOI PMC
Tzourio-Mazoyer N. et al.. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage 15, 273–289, doi: 10.1006/nimg.2001.0978 (2002). PubMed DOI
Arichi T. et al.. Development of BOLD signal hemodynamic responses in the human brain. NeuroImage 63, 663–673 (2012). PubMed PMC
Forman S. D. et al.. Improved assessment of significant activation in functional magnetic resonance imaging (fMRI): use of a cluster-size threshold. Magn Reson Med 33, 636–647 (1995). PubMed