A single residue controls electron transfer gating in photosynthetic reaction centers
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28300167
PubMed Central
PMC5353731
DOI
10.1038/srep44580
PII: srep44580
Knihovny.cz E-zdroje
- MeSH
- buněčné dýchání genetika MeSH
- elektrony MeSH
- fotosyntéza genetika MeSH
- fotosystém II (proteinový komplex) chemie genetika MeSH
- kinetika MeSH
- světlo MeSH
- světlosběrné proteinové komplexy chemie genetika MeSH
- Synechocystis chemie genetika MeSH
- transport elektronů genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fotosystém II (proteinový komplex) MeSH
- světlosběrné proteinové komplexy MeSH
Interquinone QA- → QB electron-transfer (ET) in isolated photosystem II reaction centers (PSII-RC) is protein-gated. The temperature-dependent gating frequency "k" is described by the Eyring equation till levelling off at T ≥ 240 °K. Although central to photosynthesis, the gating mechanism has not been resolved and due to experimental limitations, could not be explored in vivo. Here we mimic the temperature dependency of "k" by enlarging VD1-208, the volume of a single residue at the crossing point of the D1 and D2 PSII-RC subunits in Synechocystis 6803 whole cells. By controlling the interactions of the D1/D2 subunits, VD1-208 (or 1/T) determines the frequency of attaining an ET-active conformation. Decelerated ET, impaired photosynthesis, D1 repair rate and overall cell physiology upon increasing VD1-208 to above 130 Å3, rationalize the >99% conservation of small residues at D1-208 and its homologous motif in non-oxygenic bacteria. The experimental means and resolved mechanism are relevant for numerous transmembrane protein-gated reactions.
Zobrazit více v PubMed
Zeng Y. et al.. Characterization of the microaerophilic, bacteriochlorophyll a-containing bacterium Gemmatimonas phototrophica sp. nov., and emended descriptions of the genus Gemmatimonas and Gemmatimonas aurantiaca. International journal of systematic and evolutionary microbiology 65, 2410–2419 (2015). PubMed
Cardona T. A fresh look at the evolution and diversification of photochemical reaction centers. Photosynth Res 126, 111–134 (2015). PubMed PMC
Shen J. R. The Structure of Photosystem II and the Mechanism of Water Oxidation in Photosynthesis. Annual review of plant biology 66, 23–48 (2015). PubMed
Pieper J. et al.. Temperature-dependent vibrational and conformational dynamics of photosystem II membrane fragments from spinach investigated by elastic and inelastic neutron scattering. Biochimica et biophysica acta 1817, 1213–1219 (2012). PubMed
Sacquin-Mora S. et al.. Probing the flexibility of the bacterial reaction center: the wild-type protein is more rigid than two site-specific mutants. Biochemistry 46, 14960–14968 (2007). PubMed
Romero E. et al.. Quantum coherence in photosynthesis for efficient solar-energy conversion. Nat Phys 10, 677–683 (2014). PubMed PMC
Renger T. & Schlodder E. Optical properties, excitation energy and primary charge transfer in photosystem II: theory meets experiment. J Photochem Photobiol B 104, 126–141 (2011). PubMed
Cardona T., Sedoud A., Cox N. & Rutherford A. W. Charge separation in Photosystem II: A comparative and evolutionary overview. Bba-Bioenergetics 1817, 26–43 (2012). PubMed
Lambreva M. D. et al.. Structure/function/dynamics of photosystem II plastoquinone binding sites. Current protein & peptide science 15, 285–295 (2014). PubMed PMC
Migliore A., Polizzi N. F., Therien M. J. & Beratan D. N. Biochemistry and theory of proton-coupled electron transfer. Chemical reviews 114, 3381–3465 (2014). PubMed PMC
Muh F., Glockner C., Hellmich J. & Zouni A. Light-induced quinone reduction in photosystem II. Biochim Biophys Acta 1817, 44–65 (2012). PubMed
Okamura M. Y., Paddock M. L., Graige M. S. & Feher G. Proton and electron transfer in bacterial reaction centers. Bba-Bioenergetics 1458, 148–163 (2000). PubMed
Saito K., Rutherford A. W. & Ishikita H. Mechanism of proton-coupled quinone reduction in Photosystem II. Proc Natl Acad Sci USA 110, 954–959 (2013). PubMed PMC
Moser C. C., Anderson J. L. & Dutton P. L. Guidelines for tunneling in enzymes. Biochim Biophys Acta 1797, 1573–1586 (2010). PubMed PMC
Moser C. C., Page C. C. & Dutton P. L. Tunneling in PSII. Photoch Photobio Sci 4, 933–939 (2005). PubMed
Garbers A., Reifarth F., Kurreck J., Renger G. & Parak F. Correlation between protein flexibility and electron transfer from Q(A)(-center dot) to Q(B) in PSII membrane fragments from spinach. Biochemistry 37, 11399–11404 (1998). PubMed
Graige M. S., Feher G. & Okamura M. Y. Conformational gating of the electron transfer reaction QA- QB –> QAQB-. in bacterial reaction centers of Rhodobacter sphaeroides determined by a driving force assay. Proc Natl Acad Sci USA 95, 11679–11684 (1998). PubMed PMC
Ginet N. & Lavergne J. Conformational control of the Q(A) to Q(B) electron transfer in bacterial reaction centers: evidence for a frozen conformational landscape below −25 degrees C. Journal of the American Chemical Society 130, 9318–9331 (2008). PubMed
Guo Z. et al.. Comparing the temperature dependence of photosynthetic electron transfer in Chloroflexus aurantiacus and Rhodobactor sphaeroides reaction centers. The journal of physical chemistry. B 115, 11230–11238 (2011). PubMed
Kleinfeld D., Okamura M. Y. & Feher G. Electron-transfer kinetics in photosynthetic reaction centers cooled to cryogenic temperatures in the charge-separated state: evidence for light-induced structural changes. Biochemistry 23, 5780–5786 (1984). PubMed
Wraight C. & Maroti P. Temperature dependence of the 2nd electron transfer in bacterial reaction centers. Biophysical Journal 86, 148a–148a (2004).
Breton J. Absence of large-scale displacement of quinone QB in bacterial photosynthetic reaction centers. Biochemistry 43, 3318–3326 (2004). PubMed
Gunner M., Robertson D. E. & Dutton P. L. Kinetic studies on the reaction center protein from Rhodopseudomonas sphaeroides: the temperature and free energy dependence of electron transfer between various quinones in the QA site and the oxidized bacteriochlorophyll dimer. The Journal of Physical Chemistry 90, 3783–3795 (1986).
Teilum K., Olsen J. G. & Kragelund B. B. Functional aspects of protein flexibility. Cellular and molecular life sciences: CMLS 66, 2231–2247 (2009). PubMed PMC
Nussinov R., Tsai C. J. & Ma B. The underappreciated role of allostery in the cellular network. Annual review of biophysics 42, 169–189 (2013). PubMed PMC
Muh F. & Zouni A. The nonheme iron in photosystem II. Photosynth Res 116, 295–314 (2013). PubMed
Brudler R. et al.. FTIR spectroscopy shows weak symmetric hydrogen bonding of the QB carbonyl groups in Rhodobacter sphaeroides R26 reaction centres. FEBS letters 370, 88–92 (1995). PubMed
Martin E. et al.. Hydrogen bonding and spin density distribution in the Qb semiquinone of bacterial reaction centers and comparison with the Qa site. Journal of the American Chemical Society 133, 5525–5537 (2011). PubMed PMC
Paddock M. L. et al.. ENDOR spectroscopy reveals light induced movement of the H-bond from Ser-L223 upon forming the semiquinone (Q(B)(-)(*)) in reaction centers from Rhodobacter sphaeroides. Biochemistry 46, 8234–8243 (2007). PubMed PMC
Stowell M. H. et al.. Light-induced structural changes in photosynthetic reaction center: implications for mechanism of electron-proton transfer. Science 276, 812–816 (1997). PubMed
Baxter R. H., Seagle B. L., Ponomarenko N. & Norris J. R. Cryogenic structure of the photosynthetic reaction center of Blastochloris viridis in the light and dark. Acta crystallographica. Section D, Biological crystallography 61, 605–612 (2005). PubMed
Remy A. & Gerwert K. Coupling of light-induced electron transfer to proton uptake in photosynthesis. Nat Struct Biol 10, 637–644 (2003). PubMed
Chernev P., Zaharieva I., Dau H. & Haumann M. Carboxylate shifts steer interquinone electron transfer in photosynthesis. J Biol Chem 286, 5368–5374 (2011). PubMed PMC
Wraight C. A. Proton and electron transfer in the acceptor quinone complex of photosynthetic reaction centers from Rhodobacter sphaeroides. Front Biosci 9, 309–337 (2004). PubMed
Davidson V. L. Protein control of true, gated, and coupled electron transfer reactions. Accounts of chemical research 41, 730–738 (2008). PubMed PMC
Spencer R. H. & Rees D. C. The alpha-helix and the organization and gating of channels. Annu Rev Biophys Biomol Struct 31, 207–233 (2002). PubMed
Ursell T., Huang K. C., Peterson E. & Phillips R. Cooperative gating and spatial organization of membrane proteins through elastic interactions. PLoS computational biology 3, e81 (2007). PubMed PMC
Russ W. P. & Engelman D. M. The GxxxG motif: a framework for transmembrane helix-helix association. J Mol Biol 296, 911–919 (2000). PubMed
Zhang S. Q. et al.. The Membrane- and Soluble-Protein Helix-Helix Interactome: Similar Geometry via Different Interactions. Structure 23, 527–541 (2015). PubMed PMC
Senes A., Gerstein M. & Engelman D. M. Statistical analysis of amino acid patterns in transmembrane helices: the GxxxG motif occurs frequently and in association with beta-branched residues at neighboring positions. J Mol Biol 296, 921–936 (2000). PubMed
Umena Y., Kawakami K., Shen J. R. & Kamiya N. Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 A. Nature 473, 55–60 (2011). PubMed
Pontius J., Richelle J. & Wodak S. J. Deviations from standard atomic volumes as a quality measure for protein crystal structures. J Mol Biol 264, 121–136 (1996). PubMed
Shlyk-Kerner O. et al.. Protein flexibility acclimatizes photosynthetic energy conversion to the ambient temperature. Nature 442, 827–830 (2006). PubMed
Mohamed H. E., van de Meene A. M., Roberson R. W. & Vermaas W. F. Myxoxanthophyll is required for normal cell wall structure and thylakoid organization in the cyanobacterium Synechocystis sp. strain PCC 6803. J Bacteriol 187, 6883–6892 (2005). PubMed PMC
Dudko O. K., Hummer G. & Szabo A. Theory, analysis, and interpretation of single-molecule force spectroscopy experiments. P Natl Acad Sci USA 105, 15755–15760 (2008). PubMed PMC
Kupitz C. et al.. Serial time-resolved crystallography of photosystem II using a femtosecond X-ray laser. Nature 513, 261–265 (2014). PubMed PMC
Sauter N. K. et al.. No observable conformational changes in PSII. Nature 533, E1–2 (2016). PubMed PMC
Halas A. et al.. The dynamics of the non-heme iron in bacterial reaction centers from Rhodobacter sphaeroides. Biochim Biophys Acta 1817, 2095–2102 (2012). PubMed
Orzechowska A. et al.. Coupling of collective motions of the protein matrix to vibrations of the non-heme iron in bacterial photosynthetic reaction centers. Biochim Biophys Acta 1797, 1696–1704 (2010). PubMed
Dinamarca J. et al.. Double Mutation in Photosystem II Reaction Centers and Elevated CO2 Grant Thermotolerance to Mesophilic Cyanobacterium. Plos One 6 (2011). PubMed PMC
Grabolle M. & Dau H. Energetics of primary and secondary electron transfer in Photosystem II membrane particles of spinach revisited on basis of recombination-fluorescence measurements. Biochim Biophys Acta 1708, 209–218 (2005). PubMed
Havaux M. & Niyogi K. K. The violaxanthin cycle protects plants from photooxidative damage by more than one mechanism. Proc Natl Acad Sci USA 96, 8762–8767 (1999). PubMed PMC
Altschul S. F. et al.. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402 (1997). PubMed PMC
Koua F. H., Umena Y., Kawakami K. & Shen J. R. Structure of Sr-substituted photosystem II at 2.1 A resolution and its implications in the mechanism of water oxidation. Proceedings of the National Academy of Sciences of the United States of America 110, 3889–3894 (2013). PubMed PMC
Hellmich J. et al.. Native-like Photosystem II Superstructure at 2.44 A Resolution through Detergent Extraction from the Protein Crystal. Structure 22, 1607–1615 (2014). PubMed
Guskov A. et al.. Cyanobacterial photosystem II at 2.9-angstrom resolution and the role of quinones, lipids, channels and chloride. Nat Struct Mol Biol 16, 334–342 (2009). PubMed
Loll B., Kern J., Saenger W., Zouni A. & Biesiadka J. Towards complete cofactor arrangement in the 3.0 A resolution structure of photosystem II. Nature 438, 1040–1044 (2005). PubMed
Lomize M. A., Lomize A. L., Pogozheva I. D. & Mosberg H. I. OPM: orientations of proteins in membranes database. Bioinformatics 22, 623–625 (2006). PubMed
Schramm C. A. et al.. Knowledge-based potential for positioning membrane-associated structures and assessing residue-specific energetic contributions. Structure 20, 924–935 (2012). PubMed PMC
Word J. M., Lovell S. C., Richardson J. S. & Richardson D. C. Asparagine and glutamine: Using hydrogen atom contacts in the choice of side-chain amide orientation. Journal of Molecular Biology 285, 1735–1747 (1999). PubMed
Shapovalov M. V. & Dunbrack R. L. Jr. A smoothed backbone-dependent rotamer library for proteins derived from adaptive kernel density estimates and regressions. Structure 19, 844–858 (2011). PubMed PMC
Kless H., Oren-Shamir M., Malkin S., McIntosh L. & Edelman M. The D-E region of the D1 protein is involved in multiple quinone and herbicide interactions in photosystem II. Biochemistry 33, 10501–10507 (1994). PubMed
Ravnikar P. D., Debus R., Sevrinck J., Saetaert P. & McIntosh L. Nucleotide sequence of a second psbA gene from the unicellular cyanobacterium Synechocystis 6803. Nucleic Acids Res 17, 3991 (1989). PubMed PMC
Cser K. & Vass I. Radiative and non-radiative charge recombination pathways in Photosystem II studied by thermoluminescence and chlorophyll fluorescence in the cyanobacterium Synechocystis 6803. Bba-Bioenergetics 1767, 233–243 (2007). PubMed
Sicora C., Wiklund R., Jansson C. & Vass I. Charge stabilization and recombination in Photosystem II containing the D1′ protein product of the psbA1 gene in Synechocystis 6803. Phys Chem Chem Phys 6, 4832–4837 (2004).
Stanier R. Y., Kunisawa R., Mandel M. & Cohenbaz G. Purification and Properties of Unicellular Blue-Green Algae (Order Cchroococcales). Bacteriol Rev 35, 171-& (1971). PubMed PMC
Pocock T., Krol M. & Huner N. P. A. In Photosynthesis Research Protocols, Vol. 274 (ed. Carpentier R.) 137–148 (Humana Press Inc., Totowa, 2004).
Wellburn A. R. & Lichtenthaler H. K. Formulae and programs to determine total carotenoids and chlorophyll /a/ and /b/ of leaf extracts in different solvents. Advances In Photosynthesis Research II (1984).
Callahan F. E. et al.. A novel metabolic form of the 32 kDa-D1 protein in the grana-localized reaction center of photosystem II. J Biol Chem 265, 15357–15360 (1990). PubMed
Duan Y. et al.. A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J Comput Chem 24, 1999–2012 (2003). PubMed
Essmann U. et al.. A Smooth Particle Mesh Ewald Method. J Chem Phys 103, 8577–8593 (1995).
Rahimipour S., Ben-Aroya N., Fridkin M. & Koch Y. Design, synthesis, and evaluation of a long-acting, potent analogue of gonadotropin-releasing hormone. J Med Chem 44, 3645–3652 (2001). PubMed
Wildling L. et al.. Linking of Sensor Molecules with Amino Groups to Amino-Functionalized AFM Tips. Bioconjugate Chem 22, 1239–1248 (2011). PubMed PMC
Hutter J. L. & Bechhoefer J. Calibration of Atomic-Force Microscope Tips. Rev Sci Instrum 64, 1868–1873 (1993).
Baumgartner W., Hinterdorfer P. & Schindler H. Data analysis of interaction forces measured with the atomic force microscope. Ultramicroscopy 82, 85–95 (2000). PubMed
Rankl C. In Institute of Biophysics, Vol. PhD. (Johannes Kepler University in Linz, Linz, 2008).
Bell G. I. Models for Specific Adhesion of Cells to Cells. Science 200, 618–627 (1978). PubMed
Temperature dependence of photosynthetic reaction centre activity in Rhodospirillum rubrum