A single residue controls electron transfer gating in photosynthetic reaction centers

. 2017 Mar 16 ; 7 () : 44580. [epub] 20170316

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid28300167

Interquinone QA- → QB electron-transfer (ET) in isolated photosystem II reaction centers (PSII-RC) is protein-gated. The temperature-dependent gating frequency "k" is described by the Eyring equation till levelling off at T ≥ 240 °K. Although central to photosynthesis, the gating mechanism has not been resolved and due to experimental limitations, could not be explored in vivo. Here we mimic the temperature dependency of "k" by enlarging VD1-208, the volume of a single residue at the crossing point of the D1 and D2 PSII-RC subunits in Synechocystis 6803 whole cells. By controlling the interactions of the D1/D2 subunits, VD1-208 (or 1/T) determines the frequency of attaining an ET-active conformation. Decelerated ET, impaired photosynthesis, D1 repair rate and overall cell physiology upon increasing VD1-208 to above 130 Å3, rationalize the >99% conservation of small residues at D1-208 and its homologous motif in non-oxygenic bacteria. The experimental means and resolved mechanism are relevant for numerous transmembrane protein-gated reactions.

Zobrazit více v PubMed

Zeng Y. et al.. Characterization of the microaerophilic, bacteriochlorophyll a-containing bacterium Gemmatimonas phototrophica sp. nov., and emended descriptions of the genus Gemmatimonas and Gemmatimonas aurantiaca. International journal of systematic and evolutionary microbiology 65, 2410–2419 (2015). PubMed

Cardona T. A fresh look at the evolution and diversification of photochemical reaction centers. Photosynth Res 126, 111–134 (2015). PubMed PMC

Shen J. R. The Structure of Photosystem II and the Mechanism of Water Oxidation in Photosynthesis. Annual review of plant biology 66, 23–48 (2015). PubMed

Pieper J. et al.. Temperature-dependent vibrational and conformational dynamics of photosystem II membrane fragments from spinach investigated by elastic and inelastic neutron scattering. Biochimica et biophysica acta 1817, 1213–1219 (2012). PubMed

Sacquin-Mora S. et al.. Probing the flexibility of the bacterial reaction center: the wild-type protein is more rigid than two site-specific mutants. Biochemistry 46, 14960–14968 (2007). PubMed

Romero E. et al.. Quantum coherence in photosynthesis for efficient solar-energy conversion. Nat Phys 10, 677–683 (2014). PubMed PMC

Renger T. & Schlodder E. Optical properties, excitation energy and primary charge transfer in photosystem II: theory meets experiment. J Photochem Photobiol B 104, 126–141 (2011). PubMed

Cardona T., Sedoud A., Cox N. & Rutherford A. W. Charge separation in Photosystem II: A comparative and evolutionary overview. Bba-Bioenergetics 1817, 26–43 (2012). PubMed

Lambreva M. D. et al.. Structure/function/dynamics of photosystem II plastoquinone binding sites. Current protein & peptide science 15, 285–295 (2014). PubMed PMC

Migliore A., Polizzi N. F., Therien M. J. & Beratan D. N. Biochemistry and theory of proton-coupled electron transfer. Chemical reviews 114, 3381–3465 (2014). PubMed PMC

Muh F., Glockner C., Hellmich J. & Zouni A. Light-induced quinone reduction in photosystem II. Biochim Biophys Acta 1817, 44–65 (2012). PubMed

Okamura M. Y., Paddock M. L., Graige M. S. & Feher G. Proton and electron transfer in bacterial reaction centers. Bba-Bioenergetics 1458, 148–163 (2000). PubMed

Saito K., Rutherford A. W. & Ishikita H. Mechanism of proton-coupled quinone reduction in Photosystem II. Proc Natl Acad Sci USA 110, 954–959 (2013). PubMed PMC

Moser C. C., Anderson J. L. & Dutton P. L. Guidelines for tunneling in enzymes. Biochim Biophys Acta 1797, 1573–1586 (2010). PubMed PMC

Moser C. C., Page C. C. & Dutton P. L. Tunneling in PSII. Photoch Photobio Sci 4, 933–939 (2005). PubMed

Garbers A., Reifarth F., Kurreck J., Renger G. & Parak F. Correlation between protein flexibility and electron transfer from Q(A)(-center dot) to Q(B) in PSII membrane fragments from spinach. Biochemistry 37, 11399–11404 (1998). PubMed

Graige M. S., Feher G. & Okamura M. Y. Conformational gating of the electron transfer reaction QA- QB –> QAQB-. in bacterial reaction centers of Rhodobacter sphaeroides determined by a driving force assay. Proc Natl Acad Sci USA 95, 11679–11684 (1998). PubMed PMC

Ginet N. & Lavergne J. Conformational control of the Q(A) to Q(B) electron transfer in bacterial reaction centers: evidence for a frozen conformational landscape below −25 degrees C. Journal of the American Chemical Society 130, 9318–9331 (2008). PubMed

Guo Z. et al.. Comparing the temperature dependence of photosynthetic electron transfer in Chloroflexus aurantiacus and Rhodobactor sphaeroides reaction centers. The journal of physical chemistry. B 115, 11230–11238 (2011). PubMed

Kleinfeld D., Okamura M. Y. & Feher G. Electron-transfer kinetics in photosynthetic reaction centers cooled to cryogenic temperatures in the charge-separated state: evidence for light-induced structural changes. Biochemistry 23, 5780–5786 (1984). PubMed

Wraight C. & Maroti P. Temperature dependence of the 2nd electron transfer in bacterial reaction centers. Biophysical Journal 86, 148a–148a (2004).

Breton J. Absence of large-scale displacement of quinone QB in bacterial photosynthetic reaction centers. Biochemistry 43, 3318–3326 (2004). PubMed

Gunner M., Robertson D. E. & Dutton P. L. Kinetic studies on the reaction center protein from Rhodopseudomonas sphaeroides: the temperature and free energy dependence of electron transfer between various quinones in the QA site and the oxidized bacteriochlorophyll dimer. The Journal of Physical Chemistry 90, 3783–3795 (1986).

Teilum K., Olsen J. G. & Kragelund B. B. Functional aspects of protein flexibility. Cellular and molecular life sciences: CMLS 66, 2231–2247 (2009). PubMed PMC

Nussinov R., Tsai C. J. & Ma B. The underappreciated role of allostery in the cellular network. Annual review of biophysics 42, 169–189 (2013). PubMed PMC

Muh F. & Zouni A. The nonheme iron in photosystem II. Photosynth Res 116, 295–314 (2013). PubMed

Brudler R. et al.. FTIR spectroscopy shows weak symmetric hydrogen bonding of the QB carbonyl groups in Rhodobacter sphaeroides R26 reaction centres. FEBS letters 370, 88–92 (1995). PubMed

Martin E. et al.. Hydrogen bonding and spin density distribution in the Qb semiquinone of bacterial reaction centers and comparison with the Qa site. Journal of the American Chemical Society 133, 5525–5537 (2011). PubMed PMC

Paddock M. L. et al.. ENDOR spectroscopy reveals light induced movement of the H-bond from Ser-L223 upon forming the semiquinone (Q(B)(-)(*)) in reaction centers from Rhodobacter sphaeroides. Biochemistry 46, 8234–8243 (2007). PubMed PMC

Stowell M. H. et al.. Light-induced structural changes in photosynthetic reaction center: implications for mechanism of electron-proton transfer. Science 276, 812–816 (1997). PubMed

Baxter R. H., Seagle B. L., Ponomarenko N. & Norris J. R. Cryogenic structure of the photosynthetic reaction center of Blastochloris viridis in the light and dark. Acta crystallographica. Section D, Biological crystallography 61, 605–612 (2005). PubMed

Remy A. & Gerwert K. Coupling of light-induced electron transfer to proton uptake in photosynthesis. Nat Struct Biol 10, 637–644 (2003). PubMed

Chernev P., Zaharieva I., Dau H. & Haumann M. Carboxylate shifts steer interquinone electron transfer in photosynthesis. J Biol Chem 286, 5368–5374 (2011). PubMed PMC

Wraight C. A. Proton and electron transfer in the acceptor quinone complex of photosynthetic reaction centers from Rhodobacter sphaeroides. Front Biosci 9, 309–337 (2004). PubMed

Davidson V. L. Protein control of true, gated, and coupled electron transfer reactions. Accounts of chemical research 41, 730–738 (2008). PubMed PMC

Spencer R. H. & Rees D. C. The alpha-helix and the organization and gating of channels. Annu Rev Biophys Biomol Struct 31, 207–233 (2002). PubMed

Ursell T., Huang K. C., Peterson E. & Phillips R. Cooperative gating and spatial organization of membrane proteins through elastic interactions. PLoS computational biology 3, e81 (2007). PubMed PMC

Russ W. P. & Engelman D. M. The GxxxG motif: a framework for transmembrane helix-helix association. J Mol Biol 296, 911–919 (2000). PubMed

Zhang S. Q. et al.. The Membrane- and Soluble-Protein Helix-Helix Interactome: Similar Geometry via Different Interactions. Structure 23, 527–541 (2015). PubMed PMC

Senes A., Gerstein M. & Engelman D. M. Statistical analysis of amino acid patterns in transmembrane helices: the GxxxG motif occurs frequently and in association with beta-branched residues at neighboring positions. J Mol Biol 296, 921–936 (2000). PubMed

Umena Y., Kawakami K., Shen J. R. & Kamiya N. Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 A. Nature 473, 55–60 (2011). PubMed

Pontius J., Richelle J. & Wodak S. J. Deviations from standard atomic volumes as a quality measure for protein crystal structures. J Mol Biol 264, 121–136 (1996). PubMed

Shlyk-Kerner O. et al.. Protein flexibility acclimatizes photosynthetic energy conversion to the ambient temperature. Nature 442, 827–830 (2006). PubMed

Mohamed H. E., van de Meene A. M., Roberson R. W. & Vermaas W. F. Myxoxanthophyll is required for normal cell wall structure and thylakoid organization in the cyanobacterium Synechocystis sp. strain PCC 6803. J Bacteriol 187, 6883–6892 (2005). PubMed PMC

Dudko O. K., Hummer G. & Szabo A. Theory, analysis, and interpretation of single-molecule force spectroscopy experiments. P Natl Acad Sci USA 105, 15755–15760 (2008). PubMed PMC

Kupitz C. et al.. Serial time-resolved crystallography of photosystem II using a femtosecond X-ray laser. Nature 513, 261–265 (2014). PubMed PMC

Sauter N. K. et al.. No observable conformational changes in PSII. Nature 533, E1–2 (2016). PubMed PMC

Halas A. et al.. The dynamics of the non-heme iron in bacterial reaction centers from Rhodobacter sphaeroides. Biochim Biophys Acta 1817, 2095–2102 (2012). PubMed

Orzechowska A. et al.. Coupling of collective motions of the protein matrix to vibrations of the non-heme iron in bacterial photosynthetic reaction centers. Biochim Biophys Acta 1797, 1696–1704 (2010). PubMed

Dinamarca J. et al.. Double Mutation in Photosystem II Reaction Centers and Elevated CO2 Grant Thermotolerance to Mesophilic Cyanobacterium. Plos One 6 (2011). PubMed PMC

Grabolle M. & Dau H. Energetics of primary and secondary electron transfer in Photosystem II membrane particles of spinach revisited on basis of recombination-fluorescence measurements. Biochim Biophys Acta 1708, 209–218 (2005). PubMed

Havaux M. & Niyogi K. K. The violaxanthin cycle protects plants from photooxidative damage by more than one mechanism. Proc Natl Acad Sci USA 96, 8762–8767 (1999). PubMed PMC

Altschul S. F. et al.. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402 (1997). PubMed PMC

Koua F. H., Umena Y., Kawakami K. & Shen J. R. Structure of Sr-substituted photosystem II at 2.1 A resolution and its implications in the mechanism of water oxidation. Proceedings of the National Academy of Sciences of the United States of America 110, 3889–3894 (2013). PubMed PMC

Hellmich J. et al.. Native-like Photosystem II Superstructure at 2.44 A Resolution through Detergent Extraction from the Protein Crystal. Structure 22, 1607–1615 (2014). PubMed

Guskov A. et al.. Cyanobacterial photosystem II at 2.9-angstrom resolution and the role of quinones, lipids, channels and chloride. Nat Struct Mol Biol 16, 334–342 (2009). PubMed

Loll B., Kern J., Saenger W., Zouni A. & Biesiadka J. Towards complete cofactor arrangement in the 3.0 A resolution structure of photosystem II. Nature 438, 1040–1044 (2005). PubMed

Lomize M. A., Lomize A. L., Pogozheva I. D. & Mosberg H. I. OPM: orientations of proteins in membranes database. Bioinformatics 22, 623–625 (2006). PubMed

Schramm C. A. et al.. Knowledge-based potential for positioning membrane-associated structures and assessing residue-specific energetic contributions. Structure 20, 924–935 (2012). PubMed PMC

Word J. M., Lovell S. C., Richardson J. S. & Richardson D. C. Asparagine and glutamine: Using hydrogen atom contacts in the choice of side-chain amide orientation. Journal of Molecular Biology 285, 1735–1747 (1999). PubMed

Shapovalov M. V. & Dunbrack R. L. Jr. A smoothed backbone-dependent rotamer library for proteins derived from adaptive kernel density estimates and regressions. Structure 19, 844–858 (2011). PubMed PMC

Kless H., Oren-Shamir M., Malkin S., McIntosh L. & Edelman M. The D-E region of the D1 protein is involved in multiple quinone and herbicide interactions in photosystem II. Biochemistry 33, 10501–10507 (1994). PubMed

Ravnikar P. D., Debus R., Sevrinck J., Saetaert P. & McIntosh L. Nucleotide sequence of a second psbA gene from the unicellular cyanobacterium Synechocystis 6803. Nucleic Acids Res 17, 3991 (1989). PubMed PMC

Cser K. & Vass I. Radiative and non-radiative charge recombination pathways in Photosystem II studied by thermoluminescence and chlorophyll fluorescence in the cyanobacterium Synechocystis 6803. Bba-Bioenergetics 1767, 233–243 (2007). PubMed

Sicora C., Wiklund R., Jansson C. & Vass I. Charge stabilization and recombination in Photosystem II containing the D1′ protein product of the psbA1 gene in Synechocystis 6803. Phys Chem Chem Phys 6, 4832–4837 (2004).

Stanier R. Y., Kunisawa R., Mandel M. & Cohenbaz G. Purification and Properties of Unicellular Blue-Green Algae (Order Cchroococcales). Bacteriol Rev 35, 171-& (1971). PubMed PMC

Pocock T., Krol M. & Huner N. P. A. In Photosynthesis Research Protocols, Vol. 274 (ed. Carpentier R.) 137–148 (Humana Press Inc., Totowa, 2004).

Wellburn A. R. & Lichtenthaler H. K. Formulae and programs to determine total carotenoids and chlorophyll /a/ and /b/ of leaf extracts in different solvents. Advances In Photosynthesis Research II (1984).

Callahan F. E. et al.. A novel metabolic form of the 32 kDa-D1 protein in the grana-localized reaction center of photosystem II. J Biol Chem 265, 15357–15360 (1990). PubMed

Duan Y. et al.. A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J Comput Chem 24, 1999–2012 (2003). PubMed

Essmann U. et al.. A Smooth Particle Mesh Ewald Method. J Chem Phys 103, 8577–8593 (1995).

Rahimipour S., Ben-Aroya N., Fridkin M. & Koch Y. Design, synthesis, and evaluation of a long-acting, potent analogue of gonadotropin-releasing hormone. J Med Chem 44, 3645–3652 (2001). PubMed

Wildling L. et al.. Linking of Sensor Molecules with Amino Groups to Amino-Functionalized AFM Tips. Bioconjugate Chem 22, 1239–1248 (2011). PubMed PMC

Hutter J. L. & Bechhoefer J. Calibration of Atomic-Force Microscope Tips. Rev Sci Instrum 64, 1868–1873 (1993).

Baumgartner W., Hinterdorfer P. & Schindler H. Data analysis of interaction forces measured with the atomic force microscope. Ultramicroscopy 82, 85–95 (2000). PubMed

Rankl C. In Institute of Biophysics, Vol. PhD. (Johannes Kepler University in Linz, Linz, 2008).

Bell G. I. Models for Specific Adhesion of Cells to Cells. Science 200, 618–627 (1978). PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Temperature dependence of photosynthetic reaction centre activity in Rhodospirillum rubrum

. 2019 Nov ; 142 (2) : 181-193. [epub] 20190702

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...