Reduction of Folate by Dihydrofolate Reductase from Thermotoga maritima
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
BB/E008380/1
Biotechnology and Biological Sciences Research Council - United Kingdom
BB/J005266/1
Biotechnology and Biological Sciences Research Council - United Kingdom
- MeSH
- bakteriální proteiny chemie genetika metabolismus MeSH
- dihydrofolátreduktasa chemie genetika metabolismus MeSH
- druhová specificita MeSH
- Escherichia coli chemie enzymologie genetika MeSH
- exprese genu MeSH
- katalytická doména MeSH
- kinetika MeSH
- koncentrace vodíkových iontů MeSH
- kyselina listová chemie metabolismus MeSH
- NADP chemie metabolismus MeSH
- oxidace-redukce MeSH
- protony * MeSH
- sbalování proteinů MeSH
- sekundární struktura proteinů MeSH
- teplota MeSH
- termodynamika MeSH
- tetrahydrofoláty chemie metabolismus MeSH
- Thermotoga maritima chemie enzymologie genetika MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 5,6,7,8-tetrahydrofolic acid MeSH Prohlížeč
- bakteriální proteiny MeSH
- dihydrofolátreduktasa MeSH
- kyselina listová MeSH
- NADP MeSH
- protony * MeSH
- tetrahydrofoláty MeSH
Mammalian dihydrofolate reductases (DHFRs) catalyze the reduction of folate more efficiently than the equivalent bacterial enzymes do, despite typically having similar efficiencies for the reduction of their natural substrate, dihydrofolate. In contrast, we show here that DHFR from the hyperthermophilic bacterium Thermotoga maritima can catalyze reduction of folate to tetrahydrofolate with an efficiency similar to that of reduction of dihydrofolate under saturating conditions. Nuclear magnetic resonance and mass spectrometry experiments showed no evidence of the production of free dihydrofolate during either the EcDHFR- or TmDHFR-catalyzed reductions of folate, suggesting that both enzymes perform the two reduction steps without release of the partially reduced substrate. Our results imply that the reaction proceeds more efficiently in TmDHFR than in EcDHFR because the more open active site of TmDHFR facilitates protonation of folate. Because T. maritima lives under extreme conditions where tetrahydrofolate is particularly prone to oxidation, this ability to salvage folate may impart an advantage to the bacterium by minimizing the squandering of a valuable cofactor.
Department of Chemistry Swansea University Singleton Park Swansea SA2 8PP U K
School of Chemical Sciences University of Birmingham Edgbaston Birmingham B15 2TT U K
School of Chemistry Cardiff University Main Building Park Place Cardiff CF10 3AT U K
Citace poskytuje Crossref.org