Experimental demonstration of a fully inseparable quantum state with nonlocalizable entanglement
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28344336
PubMed Central
PMC5366861
DOI
10.1038/srep45045
PII: srep45045
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Localizability of entanglement in fully inseparable states is a key ingredient of assisted quantum information protocols as well as measurement-based models of quantum computing. We investigate the existence of fully inseparable states with nonlocalizable entanglement, that is, with entanglement which cannot be localized between any pair of subsystems by any measurement on the remaining part of the system. It is shown, that the nonlocalizable entanglement occurs already in suitable mixtures of a three-qubit GHZ state and white noise. Further, we generalize this set of states to a two-parametric family of fully inseparable three-qubit states with nonlocalizable entanglement. Finally, we demonstrate experimentally the existence of nonlocalizable entanglement by preparing and characterizing one state from the family using correlated single photons and linear optical circuit.
Zobrazit více v PubMed
Schrödinger E. Die gegenwärtige Situation in der Quantenmechanik. Naturwissenschaften 23, 807–812, 823–828, 844–849 (1935).
Werner R. F. Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277 (1989). PubMed
Dür W., Cirac J. I. & Tarrach R. Separability and Distillability of Multiparticle Quantum Systems. Phys. Rev. Lett. 83, 3562 (1999).
Dür W. & Cirac J. I. Activating bound entanglement in multiparticle systems. Phys. Rev. A 62, 022302 (2000).
Bennett C. H. et al.. Unextendible Product Bases and Bound Entanglement. Phys. Rev. Lett. 82, 5385 (1999).
Acin A., Cirac J. I. & Masanes Ll. Multipartite Bound Information Exists and Can Be Activated. Phys. Rev. Lett. 92, 107903 (2004). PubMed
Cubitt T. S., Verstraete F., Dür W. & Cirac J. I. Separable States Can Be Used To Distribute Entanglement. Phys. Rev. Lett. 91, 037902 (2003). PubMed
Gottesman D. & Chuang I. L. Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature 402, 390 (1999).
Hillery M., Bužek V. & Berthiaume A. Quantum secret sharing. Phys. Rev. A 59, 1829 (1999).
Karlsson A. & Bourennane M. Quantum teleportation using three-particle entanglement. Phys. Rev. A 58, 4394 (1998).
Hao J. C., Li C. F. & Guo G. C. Controlled dense coding using the Greenberger-Horne-Zeilinger state, Phys. Rev. A 63, 054301 (2001).
Greenberger D. M., Horne M. & Zeilinger A. Going Beyond Bell’s Theorem. In Bell’s Theorem, Quantum Theory, and Conceptions of the Universe, edited by Kafatos M., p. 69 (Kluwer, Dordrecht, 1989).
Verstraete F., Popp M. & Cirac J. I. Entanglement versus Correlations in Spin Systems. Phys. Rev. Lett. 92, 027901 (2004). PubMed
Popp M., Verstraete F., Martín-Delgado M. A. & Cirac J. I. Localizable entanglement. Phys. Rev. A 71, 042306 (2005).
Bennett C. H. et al.. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993). PubMed
Bennett C. H. & Wiesner S. J. Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69, 2881 (1992). PubMed
Roos C. F. et al.. Control and Measurement of Three-Qubit Entangled States. Science 304, 1478 (2004). PubMed
Zhao Z. et al.. Experimental demonstration of five-photon entanglement and open-destination teleportation. Nature 430, 54 (2004). PubMed
DiVincenzo D. P. et al.. Entanglement of Assistance, in Lecture Notes in Computer ScienceVol. 1509, pp. 247–257 (Springer-Verlag, Berlin, 1999).
Smolin J. A., Verstraete F. & Winter A. Entanglement of assistance and multipartite state distillation. Phys. Rev. A 72, 052317 (2005).
Gour G. Entanglement of collaboration. Phys. Rev. A 74, 052307 (2006).
Raussendorf R. & Briegel H. J. A One-Way Quantum Computer. Phys. Rev. Lett. 86, 5188 (2001). PubMed
Gross D. Computational power of quantum many-body states and some results on discrete phase spaces. Ph.D. thesis, University of London, 2008.
Van den Nest M., Miyake A., Dür W. & Briegel H. J. Universal Resources for Measurement-Based Quantum Computation. Phys. Rev. Lett. 97, 150504 (2006). PubMed
Fedrizzi A. et al.. Experimental Distribution of Entanglement with Separable Carriers. Phys. Rev. Lett. 111, 230504 (2013). PubMed
Peuntinger C. et al.. Distributing Entanglement with Separable States. Phys. Rev. Lett. 111, 230506 (2013). PubMed
Croal C. et al.. Entangling the Whole by Beam Splitting a Part. Phys. Rev. Lett. 115, 190501 (2015). PubMed
Vollmer C. E. et al.. Experimental Entanglement Distribution by Separable States. Phys. Rev. Lett. 111, 230505 (2013). PubMed
Miklin N., Moroder T. & Gühne O. Multiparticle entanglement as an emergent phenomenon. Phys. Rev. A 93, 020104 (2016).
Peres A. Separability Criterion for Density Matrices, Phys. Rev. Lett. 77, 1413 (1996). PubMed
Horodecki M., Horodecki P. & Horodecki R. Separability of mixed states: necessary and sufficient conditions. Phys. Lett. A 223, 1 (1996).
Augusiak R., Demianowicz M. & Horodecki P. Universal observable detecting all two-qubit entanglement and determinant-based separability tests. Phys. Rev. A 77, 030301 (2008).
Ježek M. et al.. Experimental Test of the Quantum Non-Gaussian Character of a Heralded Single-Photon State. Phys. Rev. Lett. 107, 213602 (2011). PubMed
Ralph T. C., Langford N. K., Bell T. B. & White A. G. Linear optical controlled-NOT gate in the coincidence basis. Phys. Rev. A 65, 062324 (2002).
Langford N. K. et al.. Demonstration of a Simple Entangling Optical Gate and Its Use in Bell-State Analysis. Phys. Rev. Lett. 95, 210504 (2005). PubMed
Kiesel N., Schmid C., Weber U., Ursin R. & Weinfurter H. Linear Optics Controlled-Phase Gate Made Simple. Phys. Rev. Lett. 95, 210505 (2005). PubMed
Okamoto R., Hofmann H. F., Takeuchi S. & Sasaki K. Demonstration of an Optical Quantum Controlled-NOT Gate without Path Interference. Phys. Rev. Lett. 95, 210506 (2005). PubMed
Mičuda M. et al.. Tomographic characterization of a linear optical quantum Toffoli gate. Phys. Rev. A 92, 032312 (2015).
Ježek M., Fiurášek J. & Hradil Z. Quantum inference of states and processes. Phys. Rev. A 68, 012305 (2003).
Hradil Z., Řeháček J., Fiurášek J. & Ježek M. Maximum-Likelihood Methods in Quantum Mechanics. Lect. Notes Phys. 649, 59 (2004).
Horodecki M., Horodecki P. & Horodecki R. Inseparable Two Spin-1/2 Density Matrices Can Be Distilled to a Singlet Form. Phys. Rev. Lett. 78, 574 (1997).
Gühne O. & Seevinck M. Separability criteria for genuine multiparticle entanglement. N. J. Phys. 12, 053002 (2010).