Formaldehyde fixation is detrimental to actin cables in glucose-depleted S. cerevisiae cells
Status PubMed-not-MEDLINE Jazyk angličtina Země Rakousko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
P 26713
Austrian Science Fund FWF - Austria
PubMed
28357356
PubMed Central
PMC5349148
DOI
10.15698/mic2016.05.499
PII: MIC0176E149
Knihovny.cz E-zdroje
- Klíčová slova
- Abp1-RFP, Abp140-GFP, Actin cables, Actin patches, yeast,
- Publikační typ
- časopisecké články MeSH
Actin filaments form cortical patches and emanating cables in fermenting cells of Saccharomyces cerevisiae. This pattern has been shown to be depolarized in glucose-depleted cells after formaldehyde fixation and staining with rhodamine-tagged phalloidin. Loss of actin cables in mother cells was remarkable. Here we extend our knowledge on actin in live glucose-depleted cells co-expressing the marker of actin patches (Abp1-RFP) with the marker of actin cables (Abp140-GFP). Glucose depletion resulted in appearance of actin patches also in mother cells. However, even after 80 min of glucose deprivation these cells showed a clear network of actin cables labeled with Abp140-GFP in contrast to previously published data. In live cells with a mitochondrial dysfunction (rho0 cells), glucose depletion resulted in almost immediate appearance of Abp140-GFP foci partially overlapping with Abp1-RFP patches in mother cells. Residual actin cables were clustered in patch-associated bundles. A similar overlapping "patchy" pattern of both actin markers was observed upon treatment of glucose-deprived rho+ cells with FCCP (the inhibitor of oxidative phosphorylation) and upon treatment with formaldehyde. While the formaldehyde-targeted process stays unknown, our results indicate that published data on yeast actin cytoskeleton obtained from glucose-depleted cells after fixation should be considered with caution.
Department of Cell Biology Division of Genetics University of Salzburg Salzburg Austria
Laboratory of Cell Reproduction Institute of Microbiology of the CAS v v i Prague Czech Republic
Zobrazit více v PubMed
Adams AE, Pringle JR. Relationship of actin and tubulin distribution to bud growth in wild-type and morphogenetic-mutant Saccharomyces cerevisiae. The Journal of cell biology. 1984;98(3):934–945. doi: 10.1083/jbc.98.3.934. PubMed DOI PMC
Mulholland J, Preuss D, Moon A, Wong A, Drubin D, Botstein D. Ultrastructure of the yeast actin cytoskeleton and its association with the plasma membrane. The Journal of cell biology. 1994;125(2):381–391. doi: 10.1083/jcb.125.2.381. PubMed DOI PMC
Amberg DC. Three-dimensional imaging of the yeast actin cytoskeleton through the budding cell cycle. Mol Biol Cell. 1998;9(12):3259–3262. doi: 10.1091/mbc.9.12.3259. PubMed DOI PMC
Hasek J, Rupes I, Svobodova J, Streiblova E. Tubulin and actin topology during zygote formation of Saccharomyces cerevisiae. J Gen Microbiol. 1987;133(12):3355–3363. doi: 10.1099/00221287-133-12-3355. PubMed DOI
Morishita M, Engebrecht J. End3p-mediated endocytosis is required for spore wall formation in Saccharomyces cerevisiae. Genetics. 2005;170(4):1561–1574. doi: 10.1534/genetics.105.041459. PubMed DOI PMC
Gourlay CW, Ayscough KR. The actin cytoskeleton: a key regulator of apoptosis and ageing? Nature reviews. 2005;6(7):583–589. doi: 10.1038/nrm1682. PubMed DOI
Karpova TS, McNally JG, Moltz SL, Cooper JA. Assembly and function of the actin cytoskeleton of yeast: relationships between cables and patches. The Journal of cell biology. 1998;142(6):1501–1517. doi: 10.1083/jcb.142.6.15018. PubMed DOI PMC
Yuzyuk T, Foehr M, Amberg DC. The MEK kinase Ssk2p promotes actin cytoskeleton recovery after osmotic stress. Mol Biol Cell. 2002;13(8):2869–2880. doi: 10.1091/mbc.02-01-0004. PubMed DOI PMC
Uesono Y, Ashe MP, Toh EA. Simultaneous yet independent regulation of actin cytoskeletal organization and translation initiation by glucose in Saccharomyces cerevisiae. Mol Biol Cell. 2004;15(4):1544–1556. doi: 10.1091/mbc.e03-12-0877. PubMed DOI PMC
Gourlay CW, Carpp LN, Timpson P, Winder SJ, Ayscough KR. A role for the actin cytoskeleton in cell death and aging in yeast. The Journal of cell biology. 2004;164(6):803–809. doi: 10.1083/jcb.200310148. PubMed DOI PMC
Laporte D, Lebaudy A, Sahin A, Pinson B, Ceschin J, Daignan-Fornier B, Sagot I. Metabolic status rather than cell cycle signals control quiescence entry and exit. The Journal of cell biology. 2011;192(6):949–957. doi: 10.1083/jcb.201009028. PubMed DOI PMC
Sagot I, Pinson B, Salin B, Daignan-Fornier B. Actin bodies in yeast quiescent cells: an immediately available actin reserve? Mol Biol Cell. 2006;17(11):4645–4655. doi: 10.1091/mbc.e06-04-0282. PubMed DOI PMC
Vandekerckhove J, Deboben A, Nassal M, Wieland T. The phalloidin binding site of F-actin. The EMBO journal. 1985;4(11):2815–2818. PubMed PMC
Doyle T, Botstein D. Movement of yeast cortical actin cytoskeleton visualized in vivo. Proceedings of the National Academy of Sciences of the United States of America. 1996;93(9):3886–3891. doi: 10.1073/pnas.93.9.3886. PubMed DOI PMC
Adams AE, Botstein D, Drubin DG. A yeast actin-binding protein is encoded by SAC6, a gene found by suppression of an actin mutation. Science. 1989;243(4888):231–233. doi: 10.1126/science.2643162. PubMed DOI
Drubin DG, Miller KG, Botstein D. Yeast actin-binding proteins: evidence for a role in morphogenesis. The Journal of cell biology . 1988;107(6 Pt2):2551–2561. doi: 10.1126/science.2643162. PubMed DOI PMC
Asakura T, Sasaki T, Nagano F, Satoh A, Obaishi H, Nishioka H, Imamura H, Hotta K, Tanaka K, Nakanishi H, Takai Y. Isolation and characterization of a novel actin filament-binding protein from Saccharomyces cerevisiae. Oncogene. 1998;16(1):121–130. doi: 10.1038/sj.onc.1201487. PubMed DOI
Yang X, Salas PJ, Pham TV, Wasserlauf BJ, Smets MJ, Myerburg RJ, Gelband H, Hoffman BF, Bassett AL. Cytoskeletal actin microfilaments and the transient outward potassium current in hypertrophied rat ventriculocytes. The Journal of physiology . 2002;541(Pt2):411–421. doi: 10.1113/jphysiol.2002.019562. PubMed DOI PMC
Yu JH, Crevenna AH, Bettenbuhl M, Freisinger T, Wedlich-Soldner R. Cortical actin dynamics driven by formins and myosin V. J Cell Sci . 2011;124(Pt9):1533–1541. doi: 10.1242/jcs.079038. PubMed DOI
Waddle JA, Karpova TS, Waterston RH, Cooper JA. Movement of cortical actin patches in yeast. The Journal of cell biology. 1996;132(5):861–870. doi: 10.1083/jcb.132.5.861. PubMed DOI PMC
Kaksonen M, Sun Y, Drubin DG. A pathway for association of receptors, adaptors, and actin during endocytic internalization. Cell. 2003;115(4):475–487. doi: 10.1016/s0092-8674(03)00883-3. PubMed DOI
Smythe E, Ayscough KR. Actin regulation in endocytosis. J Cell Sci . 2006;119(Pt 22):4589–4598. doi: 10.1242/jcs.03247. PubMed DOI
Farah ME, Sirotkin V, Haarer B, Kakhniashvili D, Amberg DC. Diverse protective roles of the actin cytoskeleton during oxidative stress. Cytoskeleton (Hoboken) 2011;68(6):340–354. doi: 10.1002/cm.20516. PubMed DOI PMC
Vasicova P, Lejskova R, Malcova I, Hasek J. The Stationary-Phase Cells of Saccharomyces cerevisiae Display Dynamic Actin Filaments Required for Processes Extending Chronological Life Span. Molecular and cellular biology. 2015;35(22):3892–3908. doi: 10.1128/mcb.00811-15. PubMed DOI PMC
Xu L, Bretscher A. Rapid glucose depletion immobilizes active myosin V on stabilized actin cables. Current biology : CB. 2014;24(20):2471–2479. doi: 10.1016/j.cub.2014.09.017. PubMed DOI PMC
Kim S, Coulombe PA. Emerging role for the cytoskeleton as an organizer and regulator of translation. Nature reviews. 2010;11(1):75–81. doi: 10.1038/nrm2818. PubMed DOI
Monastyrska I, He C, Geng J, Hoppe AD, Li Z, Klionsky DJ. Arp2 links autophagic machinery with the actin cytoskeleton. Mol Biol Cell. 2008;19(5):1962–1975. doi: 10.1091/mbc.e07-09-0892. PubMed DOI PMC
Pruyne D, Legesse-Miller A, Gao L, Dong >, Bretscher A. Mechanisms of polarized growth and organelle segregation in yeast.. Annual review of cell and developmental biology . 2004;20:559–591. doi: 10.1146/annure.cellbio.20.010403.103108. PubMed DOI
Chowdhury S, Smith KW, Gustin MC. Osmotic stress and the yeast cytoskeleton: phenotype-specific suppression of an actin mutation. The Journal of cell biology. 1992;118(3):561–571. doi: 10.1083/jcb.118.3.561. PubMed DOI PMC
Hermann GJ, King EJ, Shaw JM. The yeast gene, MDM20, is necessary for mitochondrial inheritance and organization of the actin cytoskeleton. The Journal of cell biology. 1997;137(1):141–153. doi: 10.1083/jcb.137.1.141. PubMed DOI PMC
Pruyne DW, Schott DH, Bretscher A. Tropomyosin-containing actin cables direct the Myo2p-dependent polarized delivery of secretory vesicles in budding yeast. The Journal of cell biology. 1998;143(7):1931–1945. doi: 10.1083/jcb.143.7.1931. PubMed DOI
Leadsham JE, Miller K, Ayscough KR, Colombo S, Martegani E, Sudbery P, Gourlay CW. Whi2p links nutritional sensing to actin-dependent Ras-cAMP-PKA regulation and apoptosis in yeast. J Cell Sci . 2009;122(Pt 5):706–715. doi: 10.1242/jcs.042424. PubMed DOI PMC
Gross SR, Kinzy TG. Improper organization of the actin cytoskeleton affects protein synthesis at initiation. Molecular and cellular biology. 2007;27(5):1974–1989. doi: 10.1128/mcb.00832-06. PubMed DOI PMC
Evangelista M, Pruyne D, Amberg DC, Boone C, Bretscher A. Formins direct Arp2/3-independent actin filament assembly to polarize cell growth in yeast. Nat Cell Biol. 2002;4(3):260–269. doi: 10.1038/ncb718. PubMed DOI
Kotiadis VN, Leadsham JE, Bastow EL, Gheeraert A, Whybrew JM, Bard M, Lappalainen P, Gourlay CW. Identification of new surfaces of cofilin that link mitochondrial function to the control of multi-drug resistance. J Cell Sci . 2012;125(Pt 9):2288–2299. doi: 10.1242/jcs.099390. PubMed DOI PMC
Fortsch J, Hummel E, Krist M, Westermann B. The myosin-related motor protein Myo2 is an essential mediator of bud-directed mitochondrial movement in yeast. The Journal of cell biology. 2011;194(3):473–488. doi: 10.1083/jcb.201012088. PubMed DOI PMC
Tate JJ, Cooper TG. Formalin can alter the intracellular localization of some transcription factors in Saccharomyces cerevisiae. FEMS yeast research. 2008;8(8):1223–1235. doi: 10.1111/j.1567-1364.2008.00441.x. PubMed DOI PMC
Chi YN, Zhang X, Cai J, Liu FY, Xing GG, Wan Y. Formaldehyde increases intracellular calcium concentration in primary cultured hippocampal neurons partly through NMDA receptors and T-type calcium channels. Neurosci Bull. 2012;28(6):715–722. doi: 10.1007/s12264-012-1284-9. PubMed DOI PMC
Rizzuto R, De Stefani D, Raffaeollo A, Mammucari C. Mitochondria as sensors and regulators of calcium signalling. Nature reviews . 2012;13:566–578. doi: 10.1038/nrm3412. PubMed DOI
Tiffert T, Garcia-Sancho J, Lew VL. Irreversible ATP depletion caused by low concentrations of formaldehyde and of calcium-chelator esters in intact human red cells. Biochimica et biophysica acta. 1984;773(1):143–156. doi: 10.1016/0005-2736(84)90559-5. PubMed DOI
Hasek J, Rupes I, Svobodova J, Streiblova E. Tubulin and Actin Topology during Zygote Formation of Saccharomyces-Cerevisiae. Journal of General Microbiology . 1987;133:3355–3363. doi: 10.1099/00221287-133-12-3355. PubMed DOI
Hasek J, Bartnicki-Garcia S. The arrangement of F-actin and microtubules during germination of Mucor rouxii sporangiospores. Arch Microbiol. 1994;161(5):363–369. doi: 10.1007/bf00288945. PubMed DOI
Dankova R, Hasek J, Streiblova E. Tubulin and Actin Patterns in the Life-Cycle of Saccharomycodes-Ludwigii Hansen. Canadian Journal of Microbiology. 1988;34(12):1310–1315. doi: 10.1139/m88-229. DOI
Hasek J, Streiblova E. Fluorescence microscopy methods. Methods Mol Biol . 1996;53:391–405. doi: 10.1385/0-89603-319-8:391. PubMed DOI
Hasek J, Trachtulcova P, Kohlwein SD, Streiblova E. Colocalization of cortical microtubules and F-actin in Dipodascus magnusii using confocal laser scanning microscopy. Folia Microbiol (Praha) 2003;48(2):177–182. doi: 10.1007/bf02930952. PubMed DOI
Hasek J. Yeast fluorescence microscopy. 2006;(85-96) doi: 10.1385/1-59259-958-3:085. PubMed DOI
Sambrook J, Russell DW. Molecular cloning: a laboratory manual 3rd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY. 2001 doi: 10.1086/394015. DOI
Goldring ES, Grossman LI, Krupnick D, Cryer DR, Marmur J. The petite mutation in yeast. Loss of mitochondrial deoxyribonucleic acid during induction of petites with ethidium bromide. . Journal of molecular biology. 1970;52(2):323–335. doi: 10.1016/0022-2836(70)90033-1. PubMed DOI
Grousl T, Ivanov P, Frydlova I, Vasicova P, Janda F, Vojtova J, Malinska I, Malcova I, Novakova L, Janoskova D, Valasek L, Hasek J. Robust heat shock induces eIF2alpha-phosphorylation-independent assembly of stress granules containing eIF3 and 40S ribosomal subunits in budding yeast, Saccharomyces cerevisiae. Journal of Cell Science . 2009;112(Pt 12):2078–2088. doi: 10.1242/jcs.045104. PubMed DOI
Kaksonen M, Toret CP, Drubin DG. A modular design for the clathrin- and actin-mediated endocytosis machinery. . Cell. 2005;123(2):305–320. doi: 10.1016/j.cell.2005.09.024. PubMed DOI