Clearing the outer mitochondrial membrane from harmful proteins via lipid droplets
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
28386457
PubMed Central
PMC5357670
DOI
10.1038/cddiscovery.2017.16
PII: cddiscovery201716
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
In recent years it turned out that there is not only extensive communication between the nucleus and mitochondria but also between mitochondria and lipid droplets (LDs) as well. We were able to demonstrate that a number of proteins shuttle between LDs and mitochondria and it depends on the metabolic state of the cell on which organelle these proteins are predominantly localized. Responsible for the localization of the particular proteins is a protein domain consisting of two α-helices, which we termed V-domain according to the predicted structure. So far we have detected this domain in the following proteins: mammalian BAX, BCL-XL, TCTP and yeast Mmi1p and Erg6p. According to our experiments there are two functions of this domain: (1) shuttling of proteins to mitochondria in times of stress and apoptosis; (2) clearing the outer mitochondrial membrane from pro- as well as anti-apoptotic proteins by moving them to LDs after the stress ceases. In this way the LDs are used by the cell to modulate stress response.
Department of Molecular Biology University of Salzburg Salzburg Austria
Faculty of Medicine University of Prishtina Prishtinë Kosova
Laboratory of Cell Reproduction Institute of Microbiology of AS CR v v i Prague Czech Republic
Zobrazit více v PubMed
Breitenbach M, Rinnerthaler M, Hartl J, Stincone A, Vowinckel J, Breitenbach-Koller H et al. Mitochondria in ageing: there is metabolism beyond the ROS. FEMS Yeast Res 2014; 14: 198–212. PubMed
Quiros PM, Mottis A, Auwerx J. Mitonuclear communication in homeostasis and stress. Nat Rev Mol Cell Biol 2016; 17: 213–226. PubMed
Rinnerthaler M, Buttner S, Laun P, Heeren G, Felder TK, Klinger H et al. Yno1p/Aim14p, a NADPH-oxidase ortholog, controls extramitochondrial reactive oxygen species generation, apoptosis, and actin cable formation in yeast. Proc Natl Acad Sci USA 2012; 109: 8658–8663. PubMed PMC
Harman D. The biologic clock: the mitochondria? J Am Geriatr Soc 1972; 20: 145–147. PubMed
Turrens JF. Mitochondrial formation of reactive oxygen species. J Physiol 2003; 552: 335–344. PubMed PMC
Klinger H, Rinnerthaler M, Lam YT, Laun P, Heeren G, Klocker A et al. Quantitation of (a)symmetric inheritance of functional and of oxidatively damaged mitochondrial aconitase in the cell division of old yeast mother cells. Exp Gerontol 2010; 45: 533–542. PubMed
Ahmad T, Aggarwal K, Pattnaik B, Mukherjee S, Sethi T, Tiwari BK et al. Computational classification of mitochondrial shapes reflects stress and redox state. Cell Death Dis 2013; 4: e461. PubMed PMC
McCord JM, Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem 1969; 244: 6049–6055. PubMed
Held NM, Houtkooper RH. Mitochondrial quality control pathways as determinants of metabolic health. Bioessays 2015; 37: 867–876. PubMed PMC
Gerdes F, Tatsuta T, Langer T. Mitochondrial AAA proteases--towards a molecular understanding of membrane-bound proteolytic machines. Biochim Biophys Acta 2012; 1823: 49–55. PubMed
Smaili SS, Hsu YT, Carvalho ACP, Rosenstock TR, Sharpe JC, Youle RJ. Mitochondria, calcium and pro-apoptotic proteins as mediators in cell death signaling. Braz J Med Biol Res 2003; 36: 183–190. PubMed
Otera H, Mihara K. Mitochondrial dynamics: functional link with apoptosis. Int J Cell Biol 2012; 2012: 821676. PubMed PMC
Mattson MP, Chan SL. Calcium orchestrates apoptosis. Nat Cell Biol 2003; 5: 1041–1043. PubMed
Thiede B, Rudel T. Proteome analysis of apoptotic cells. Mass Spectrom Rev 2004; 23: 333–349. PubMed
Braun RJ, Zischka H, Madeo F, Eisenberg T, Wissing S, Buttner S et al. Crucial mitochondrial impairment upon CDC48 mutation in apoptotic yeast. J Biol Chem 2006; 281: 25757–25767. PubMed
Lindsay J, Esposti MD, Gilmore AP. Bcl-2 proteins and mitochondria-specificity in membrane targeting for death. Biochim Biophys Acta 2011; 1813: 532–539. PubMed
Happo L, Strasser A, Cory S. BH3-only proteins in apoptosis at a glance. J Cell Sci 2012; 125: 1081–1087. PubMed PMC
Westphal D, Dewson G, Czabotar PE, Kluck RM. Molecular biology of Bax and Bak activation and action. Biochim Biophys Acta 2011; 1813: 521–531. PubMed
Oltvai ZN, Milliman CL, Korsmeyer SJ. Bcl-2 heterodimerizes in-vivo with a conserved homolog, Bax, that accelerates programmed cell-death. Cell 1993; 74: 609–619. PubMed
Boise LH, Gonzalezgarcia M, Postema CE, Ding LY, Lindsten T, Turka LA et al. Bcl-X, a Bcl-2-related gene that functions as a dominant regulator of apoptotic cell-death. Cell 1993; 74: 597–608. PubMed
Dlugosz PJ, Billen LP, Annis MG, Zhu WJ, Zhang Z, Lin JL et al. Bcl-2 changes conformation to inhibit Bax oligomerization. Embo J 2006; 25: 2287–2296. PubMed PMC
Kissova I, Salin B, Schaeffer J, Bhatia S, Manon S, Camougrand N. Selective and non-selective autophagic degradation of mitochondria in yeast. Autophagy 2007; 3: 329–336. PubMed
Berkowitz O, Jost R, Pollmann S, Masle J. Characterization of TCTP, the translationally controlled tumor protein, from Arabidopsis thaliana. Plant Cell 2008; 20: 3430–3447. PubMed PMC
Gnanasekar M, Dakshinamoorthy G, Ramaswamy K. Translationally controlled tumor protein is a novel heat shock protein with chaperone-like activity. Biochem Biophys Res Commun 2009; 386: 333–337. PubMed PMC
Thaw P, Baxter NJ, Hounslow AM, Price C, Waltho JP, Craven CJ. Structure of TCTP reveals unexpected relationship with guanine nucleotide-free chaperones. Nat Struct Biol 2001; 8: 701–704. PubMed
Bommer UA, Thiele BJ. The translationally controlled tumour protein (TCTP). Int J Biochem Cell B 2004; 36: 379–385. PubMed
Graidist P, Yazawa M, Tonganunt M, Nakatomi A, Lin CCJ, Chang JY et al. Fortilin binds Ca2+ and blocks Ca2+-dependent apoptosis in vivo. Biochem J 2007; 408: 181–191. PubMed PMC
Gachet Y, Tournier S, Lee M, Lazaris-Karatzas A, Poulton T, Bommer UA. The growth-related, translationally controlled protein P23 has properties of a tubulin binding protein and associates transiently with microtubules during the cell cycle. J Cell Sci 1999; 112: 1257–1271. PubMed
Macdonald SM, Rafnar T, Langdon J, Lichtenstein LM. Molecular-identification of an Ige-dependent histamine-releasing factor. Science 1995; 269: 688–690. PubMed
Kim HY, Kim S, Pyun HJ, Maeng J, Lee K. Cellular uptake mechanism of TCTP-PTD in human lung carcinoma cells. Mol Pharmaceut 2015; 12: 194–203. PubMed
Rinnerthaler M, Jarolim S, Palle E, Perju S, Klinger H, Bogengruber E et al. MMI1 (YKL056c, TMA19), the yeast orthologue of the translationally controlled tumor protein (TCTP) has apoptotic functions and interacts with both microtubules and mitochondria. Bba-Bioenergetics 2006; 1757: 631–638. PubMed
Susini L, Besse S, Duflaut D, Lespagnol A, Beekman C, Fiucci G et al. TCTP protects from apoptotic cell death by antagonizing bax function. Cell Death Differ 2008; 15: 1211–1220. PubMed
Rinnerthaler M, Lejskova R, Grousl T, Stradalova V, Heeren G, Richter K et al. Mmi1, the yeast homologue of mammalian TCTP, associates with stress granules in heat-shocked cells and modulates proteasome activity. Plos One 2013; 8: e77791. 1–13. PubMed PMC
Renault TT, Manon S. Bax: addressed to kill. Biochimie 2011; 93: 1379–1391. PubMed
Nouraini S, Six E, Matsuyama S, Krajewski S, Reed JC. The putative pore-forming domain of Bax regulates mitochondrial localization and interaction with Bcl-X(L). Mol Cell Biol 2000; 20: 1604–1615. PubMed PMC
Annis MG, Soucie EL, Dlugosz PJ, Cruz-Aguado JA, Penn LZ, Leber B et al. Bax forms multispanning monomers that oligomerize to permeabilize membranes during apoptosis. EMBO J 2005; 24: 2096–2103. PubMed PMC
Athenstaedt K, Zweytick D, Jandrositz A, Kohlwein SD, Daum G. Identification and characterization of major lipid particle proteins of the yeast Saccharomyces cerevisiae. J Bacteriol 1999; 181: 6441–6448. PubMed PMC
Zahedi RP, Sickmann A, Boehm AM, Winkler C, Zufall N, Schonfisch B et al. Proteomic analysis of the yeast mitochondrial outer membrane reveals accumulation of a subclass of preproteins. Mol Biol Cell 2006; 17: 1436–1450. PubMed PMC
Wolins NE, Quaynor BK, Skinner JR, Schoenfish MJ, Tzekov A, Bickel PE. S3-12, adipophilin, and TIP47 package lipid in adipocytes. J Biol Chem 2005; 280: 19146–19155. PubMed
Walther TC, Farese RV Jr. The life of lipid droplets. Biochim Biophys Acta 2009; 1791: 459–466. PubMed PMC
Yano M, Kanazawa M, Terada K, Takeya M, Hoogenraad N, Mori M. Functional analysis of human mitochondrial receptor Tom20 for protein import into mitochondria. J Biol Chem 1998; 273: 26844–26851. PubMed
Kissova I, Polcic P, Kempna P, Zeman I, Sabova L, Kolarov J. The cytotoxic action of Bax on yeast cells does not require mitochondrial ADP/ATP carrier but may be related to its import to the mitochondria. FEBS Lett 2000; 471: 113–118. PubMed
Kissova I, Plamondon LT, Brisson L, Priault M, Renouf V, Schaeffer J et al. Evaluation of the roles of apoptosis, autophagy, and mitophagy in the loss of plating efficiency induced by Bax expression in yeast. J Biol Chem 2006; 281: 36187–36197. PubMed
Buttner S, Ruli D, Vogtle FN, Galluzzi L, Moitzi B, Eisenberg T et al. A yeast BH3-only protein mediates the mitochondrial pathway of apoptosis. Embo J 2011; 30: 2779–2792. PubMed PMC
Bommer UA. Cellular function and regulation of the translationally controlled tumour protein TCTP. Open Allergy J 2012; 5: 19–32.
Greenspan P, Mayer EP, Fowler SD. Nile red: a selective fluorescent stain for intracellular lipid droplets. J Cell Biol 1985; 100: 965–973. PubMed PMC
Garcia-Perez C, Roy SS, Naghdi S, Lin X, Davies E, Hajnoczky G. Bid-induced mitochondrial membrane permeabilization waves propagated by local reactive oxygen species (ROS) signaling. Proc Natl Acad Sci USA 2012; 109: 4497–4502. PubMed PMC
Fukumoto S, Fujimoto T. Deformation of lipid droplets in fixed samples. Histochem Cell Biol 2002; 118: 423–428. PubMed
Sorger D, Athenstaedt K, Hrastnik C, Daum G. A yeast strain lacking lipid particles bears a defect in ergosterol formation. J Biol Chem 2004; 279: 31190–31196. PubMed
Willimott S, Merriam T, Wagner SD. Apoptosis induces Bcl-XS and cleaved Bcl-XL in chronic lymphocytic leukaemia. Biochem Biophys Res Commun 2011; 405: 480–485. PubMed
Reue K. A thematic review series: lipid droplet storage and metabolism: from yeast to man. J Lipid Res 2011; 52: 1865–1868. PubMed PMC
Wolinski H, Kohlwein SD. Microscopic and spectroscopic techniques to investigate lipid droplet formation and turnover in yeast. Methods Mol Biol 2015; 1270: 289–305. PubMed
Pol A, Gross SP, Parton RG. Review: biogenesis of the multifunctional lipid droplet: lipids, proteins, and sites. J Cell Biol 2014; 204: 635–646. PubMed PMC
Brasaemle DL, Subramanian V, Garcia A, Marcinkiewicz A, Rothenberg A, Perilipin A. and the control of triacylglycerol metabolism. Mol Cell Biochem 2009; 326: 15–21. PubMed
Blanchettemackie EJ, Dwyer NK, Barber T, Coxey RA, Takeda T, Rondinone CM et al. Perilipin is located on the surface-layer of intracellular lipid droplets in adipocytes. J Lipid Res 1995; 36: 1211–1226. PubMed
Wang CW. Lipid droplets, lipophagy, and beyond. Biochim Biophys Acta 2015; 1861: 793–805. PubMed
Fujimoto T, Ohsaki Y, Cheng J, Suzuki M, Shinohara Y. Lipid droplets: a classic organelle with new outfits. Histochem Cell Biol 2008; 130: 263–279. PubMed PMC
Cermelli S, Guo Y, Gross SP, Welte MA. The lipid-droplet proteome reveals that droplets are a protein-storage depot. Curr Biol 2006; 16: 1783–1795. PubMed
Bailey AP, Koster G, Guillermier C, Hirst EM, MacRae JI, Lechene CP et al. Antioxidant role for lipid droplets in a stem cell niche of Drosophila. Cell 2015; 163: 340–353. PubMed PMC
Aon MA, Bhatt N, Cortassa SC. Mitochondrial and cellular mechanisms for managing lipid excess. Front Physiol 2014; 5: 282. PubMed PMC
Gao Q, Goodman JM. The lipid droplet-a well-connected organelle. Front Cell Dev Biol 2015; 3: 49. PubMed PMC
Boren J, Brindle KM. Apoptosis-induced mitochondrial dysfunction causes cytoplasmic lipid droplet formation. Cell Death Differ 2012; 19: 1561–1570. PubMed PMC
Tirinato L, Liberale C, Di Franco S, Candeloro P, Benfante A, La Rocca R et al. Lipid droplets: a new player in colorectal cancer stem cells unveiled by spectroscopic imaging. Stem Cells 2015; 33: 35–44. PubMed PMC
Abramczyk H, Surmacki J, Kopec M, Olejnik AK, Lubecka-Pietruszewska K, Fabianowska-Majewska K. The role of lipid droplets and adipocytes in cancer. Raman imaging of cell cultures: MCF10A, MCF7, and MDA-MB-231 compared to adipocytes in cancerous human breast tissue. Analyst 2015; 140: 2224–2235. PubMed
Rohana A, Fadzilah Adibah AM, Muhammad Roji MS. Oleate induces apoptosis in 3T3-L1 adipocytes. Int J Biol Biomol Agric Food Biotechnol Eng 2011; 5: 504–507.
Sommerweiss D, Gorski T, Richter S, Garten A, Kiess W. Oleate rescues INS-1E beta-cells from palmitate-induced apoptosis by preventing activation of the unfolded protein response. Biochem Biophys Res Commun 2013; 441: 770–776. PubMed