Effects of UV-B radiation on leaf hair traits of invasive plants-Combining historical herbarium records with novel remote sensing data
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
28414764
PubMed Central
PMC5393584
DOI
10.1371/journal.pone.0175671
PII: PONE-D-17-01470
Knihovny.cz E-zdroje
- MeSH
- Asteraceae anatomie a histologie účinky záření MeSH
- Echium anatomie a histologie účinky záření MeSH
- ekosystém MeSH
- listy rostlin anatomie a histologie účinky záření MeSH
- podnebí MeSH
- technologie dálkového snímání MeSH
- ultrafialové záření MeSH
- zavlečené druhy MeSH
- Publikační typ
- časopisecké články MeSH
Ultraviolet-B (UV-B) radiation is a key but under-researched environmental factor that initiates diverse responses in plants, potentially affecting their distribution. To date, only a few macroecological studies have examined adaptations of plant species to different levels of UV-B. Here, we combined herbarium specimens of Hieracium pilosella L. and Echium vulgare L. with a novel UV-B dataset to examine differences in leaf hair traits between the plants' native and alien ranges. We analysed scans of 336 herbarium specimens using standardized measurements of leaf area, hair density (both species) and hair length (H. pilosella only). While accounting for other bioclimatic variables (i.e. temperature, precipitation) and effects of herbivory, we examined whether UV-B exposure explains the variability and geographical distribution of these traits in the native (Northern Hemisphere) vs. the alien (Southern Hemisphere) range. UV-B explained the largest proportion of the variability and geographical distribution of hair length in H. pilosella (relative influence 67.1%), and hair density in E. vulgare (66.2%). Corresponding with higher UV-B, foliar hairs were 25% longer for H. pilosella and 25% denser for E. vulgare in records from the Southern as compared to those from the Northern Hemisphere. However, focusing on each hemisphere separately or controlling for its effect in a regression analysis, we found no apparent influence of UV-B radiation on hair traits. Thus, our findings did not confirm previous experimental studies which suggested that foliar hairs may respond to higher UV-B intensities, presumably offering protection against detrimental levels of radiation. We cannot rule out UV-B radiation as a possible driver because UV-B radiation was the only considered variable that differed substantially between the hemispheres, while bioclimatic conditions (e.g. temperature, precipitation) and other considered variables (herbivory damage, collection date) were at similar levels. However, given that either non-significant or inconclusive relationships were detected within hemispheres, alternative explanations of the differences in foliar hairs are more likely, including the effects of environment, genotypes or herbivory.
Zobrazit více v PubMed
Jansen MAK, Bornman JF. UV-B radiation: from generic stressor to specific regulator. Physiol Plantarum. 2012;145(4):501–4. PubMed
Wargent JJ, Jordan BR. From ozone depletion to agriculture: understanding the role of UV radiation in sustainable crop production. New Phytol. 2013;197(4):1058–76. doi: 10.1111/nph.12132 PubMed DOI
Newsham KK, Robinson SA. Responses of plants in polar regions to UVB exposure: a meta-analysis. Global Change Biol. 2009;15(11):2574–89.
Xiong FS, Day TA. Effect of solar ultraviolet-B radiation during springtime ozone depletion on photosynthesis and biomass production of Antarctic vascular plants. Plant Physiol. 2001;125(2):738–51. PubMed PMC
Björn LO. Effects of ozone depletion and increased UV‐B on terrestrial ecosystems. International journal of environmental studies. 1996;51(3):217–43.
Brosché M, Strid Å. Molecular events following perception of ultraviolet-B radiation by plants. Physiol Plantarum. 2003;117(1):1–10.
Jansen MAK, Gaba V, Greenberg BM. Higher plants and UV-B radiation: Balancing damage, repair and acclimation. Trends Plant Sci. 1998;3(4):131–5.
Lake JA, Field KJ, Davey MP, Beerling DJ, Lomax BH. Metabolomic and physiological responses reveal multi-phasic acclimation of Arabidopsis thaliana to chronic UV radiation. Plant Cell Environ. 2009;32(10):1377–89. doi: 10.1111/j.1365-3040.2009.02005.x PubMed DOI
Robson TM, Klem K, Urban O, Jansen MAK. Re-interpreting plant morphological responses to UV-B radiation. Plant Cell Environ. 2015;38(5):856–66. doi: 10.1111/pce.12374 PubMed DOI
Manetas Y. The importance of being hairy: the adverse effects of hair removal on stem photosynthesis of Verbascum speciosum are due to solar UV-B radiation. New Phytol. 2003;158(3):503–8. PubMed
Filella I, Peñuelas J. Altitudinal differences in UV absorbance, UV reflectance and related morphological traits of Quercus ilex and Rhododendron ferrugineum in the Mediterranean region. Plant Ecol. 1999;145(1):157–65.
Liakoura V, Stefanou M, Manetas Y, Cholevas C, Karabourniotis G. Trichome density and its UV-B protective potential are affected by shading and leaf position on the canopy. Environ Exp Bot. 1997;38(3):223–9.
Yamasaki S, Murakami Y. Continuous UV-B irradiation induces endoreduplication and trichome formation in Cotyledons, and reduces epidermal cell division and expansion in the first leaves of pumpkin seedlings (Cucurbita maxima Duch.× C. moschata Duch.). Environmental Control in Biology. 2014;52(4):203–9.
Beckmann M, Hock M, Bruelheide H, Erfmeier A. The role of UV-B radiation in the invasion of Hieracium pilosella-A comparison of German and New Zealand plants. Environ Exp Bot. 2012;75:173–80.
Caldwell MM, Robberecht R, Billings WD. A Steep Latitudinal Gradient of Solar Ultraviolet-B Radiation in the Arctic-Alpine Life Zone. Ecology. 1980;61(3):600–11.
Hay WW, DeConto RM, Wold CN. Climate: Is the past the key to the future? Geol Rundsch. 1997;86(2):471–91.
Herman JR, Bhartia PK, Ziemke J, Ahmad Z, Larko D. UV-B increases (1979–1992) from decreases in total ozone. Geophys Res Lett. 1996;23(16):2117–20.
Godar DE. UV doses worldwide. Photochem Photobiol. 2005;81(4):736–49. doi: 10.1562/2004-09-07-IR-308 PubMed DOI
Watanabe S, Takemura T, Sudo K, Yokohata T, Kawase H. Anthropogenic changes in the surface all-sky UV-B radiation through 1850–2005 simulated by an Earth system model. Atmos Chem Phys. 2012;12(11):5249–57.
Robinson SA, Erickson DJ. Not just about sunburn—the ozone hole's profound effect on climate has significant implications for Southern Hemisphere ecosystems. Global Change Biol. 2015;21(2):515–27. PubMed
Hofmann RW, Campbell BD. Response of Trifolium repens to UV-B radiation: morphological links to plant productivity and water availability. Plant Biology. 2011;13(6):896–901. doi: 10.1111/j.1438-8677.2011.00458.x PubMed DOI
Paul ND, Moore JP, McPherson M, Lambourne C, Croft P, Heaton JC, et al. Ecological responses to UV radiation: interactions between the biological effects of UV on plants and on associated organisms. Physiol Plantarum. 2012;145(4):565–81. PubMed
Robberecht R, Caldwell MM, Billings WD. Leaf ultraviolet optical-properties along a latitudinal gradient in the Arctic-Alpine life zone. Ecology. 1980;61(3):612–9.
Grinnell J. The English sparrow has arrived in death valley: an experiment in nature. The American Naturalist. 1919;53(628):468–72.
Qaderi MM, Yeung EC, Reid DM. Growth and physiological responses of an invasive alien species, Silene noctiflora, during two developmental stages to four levels of ultraviolet-B radiation. Ecoscience. 2008;15(2):150–9.
Beckmann M, Václavík T, Manceur AM, Šprtová L, von Wehrden H, Welk E, et al. glUV: a global UV-B radiation data set for macroecological studies. Methods Ecol Evol. 2014;5(4):372–83.
Leger EA. Annual plants change in size over a century of observations. Global Change Biol. 2013;19(7):2229–39. PubMed
Guerin GR, Wen HX, Lowe AJ. Leaf morphology shift linked to climate change. Biol Letters. 2012;8(5):882–6. PubMed PMC
Reef R, Lovelock CE. Historical analysis of mangrove leaf traits throughout the 19th and 20th centuries reveals differential responses to increases in atmospheric CO2. Global Ecol Biogeogr. 2014;23(11):1209–14.
Aikio S, Duncan RP, Hulme PE. The vulnerability of habitats to plant invasion: disentangling the roles of propagule pressure, time and sampling effort. Global Ecol Biogeogr. 2012;21(8):778–86.
Burns KC, Herold N, Wallace B. Evolutionary size changes in plants of the south-west Pacific. Global Ecol Biogeogr. 2012;21(8):819–28.
Treskonova M. Changes in the structure of tall tussock grasslands and infestation by species of Hieracium in the Mackenzie Country, New-Zealand. New Zeal J Ecol. 1991;15(1):65–78.
Webb C, Sykes W, Garnock-Jones P. Flora of New Zealand IV: naturalized dicots, gymnosperms, ferns and fern allies. Botany Division DSIR. 1988.
Hock M. Die Relevanz von UV-B-Strahlung als selektiver Umweltfaktor für invasive Pflanzenarten in Neuseeland [Master Thesis]: Martin Luther University Halle-Wittenberg; 2012.
Jäger EJ, Werner K. Rothmaler, Exkursionsflora von Deutschland. Gefäßpflanzen: Kritischer Band; 2002;9.
Espie PR. Hieracium in New Zealand: ecology and management: AgResearch; 2001.
Klemow KM, Clements DR, Threadgill PF, Cavers PB. The biology of Canadian weeds. 116. Echium vulgare L. Can J Plant Sci. 2002;82(1):235–48.
Trewick SA, Morgan-Richards M, Chapman HM. Chloroplast DNA diversity of Hieracium pilosella (Asteraceae) introduced to New Zealand: Reticulation, hybridization, and invasion. Am J Bot. 2004;91(1):73–85. doi: 10.3732/ajb.91.1.73 PubMed DOI
Bishop GF, Davy AJ. Hieracium-pilosella L (Pilosella-officinarum F Schultz-and-Schultz-Bip). J Ecol. 1994;82(1):195–210.
Wilson LM, McCaffrey JP, Quimby PC Jr, Birdsall JL. Hawkweeds in the northwestern United States. Rangelands. 1997:18–23.
Seckmeyer G, Mckenzie RL. Increased ultraviolet-radiation in New-Zealand (45-Degrees-S) relative to Germany (48-Degrees-N). Nature. 1992;359(6391):135–7.
Beckmann M, Bruelheide H, Erfmeier A. Local performance of six clonal alien species differs between native and invasive regions in Germany and New Zealand. Austral Ecol. 2014;39(4):378–87.
Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. Very high resolution interpolated climate surfaces for global land areas. Int J Climatol. 2005;25(15):1965–78.
R Development Core Team. R: A language and environment for statistical computing Vienna, Austria: R Foundation for Statistical Computing; 2011.
Ridgeway G. gbm: Generalized boosted regression models. R package version. 2006;1(3).
De'Ath G. Multivariate regression trees: a new technique for modeling species-environment relationships. Ecology. 2002;83(4):1105–17.
Elith J, Leathwick JR, Hastie T. A working guide to boosted regression trees. J Anim Ecol. 2008;77(4):802–13. doi: 10.1111/j.1365-2656.2008.01390.x PubMed DOI
Cliff A, Ord K. Testing for spatial autocorrelation among regression residuals. Geogr Anal. 1972;4(3):267–84.
Roy BA, Stanton ML, Eppley SM. Effects of environmental stress on leaf hair density and consequences for selection. J Evolution Biol. 1999;12(6):1089–103.
Blumenthal DM, Kray JA, Ziska L, Dukes J. Climate change, plant traits and invasion in natural and agricultural ecosystems. Invasive Species and Global Climate Change. 2014;4:62.
Drenovsky RE, Grewell BJ, D'Antonio CM, Funk JL, James JJ, Molinari N, et al. A functional trait perspective on plant invasion. Ann Bot-London. 2012;110(1):141–53. PubMed PMC
Lee CE. Evolutionary genetics of invasive species. Trends Ecol Evol. 2002;17(8):386–91.
Bastlová-Hanzélyová D, Brundu G, Brock J, Camarda I, Child L, Wade M. Comparative study of native and invasive populations of Lythrum salicaria: population characteristics, site and community relationships. Plant invasions: species ecology and ecosystem management. 2001:33–40.
Jakobs G, Weber E, Edwards PJ. Introduced plants of the invasive Solidago gigantea (Asteraceae) are larger and grow denser than conspecifics in the native range. Divers Distrib. 2004;10(1):11–9.
Rejmánek M, Richardson DM. What attributes make some plant species more invasive? Ecology. 1996;77(6):1655–61.
Groves R. Are some weeds sleeping? Some concepts and reasons. Euphytica. 2006;148(1–2):111–20.
Crooks JA, Soulé ME, Sandlund O. Lag times in population explosions of invasive species: causes and implications. Invasive species and biodiversity management. 1999:103–25.
Dalin P, Ågren J, Björkman C, Huttunen P, Kärkkäinen K. Leaf trichome formation and plant resistance to herbivory. Induced plant resistance to herbivory: Springer; 2008. p. 89–105.
Barnes PW, Kersting AR, Flint SD, Beyschlag W, Ryel RJ. Adjustments in epidermal UV-transmittance of leaves in sun-shade transitions. Physiol Plantarum. 2013;149(2):200–13. PubMed
Robson TM, Aphalo PJ. Species-specific effect of UV-B radiation on the temporal pattern of leaf growth. Physiol Plantarum. 2012;144(2):146–60. PubMed
Navas ML, Garnier E. Plasticity of whole plant and leaf traits in Rubia peregrina in response to light, nutrient and water availability. Acta Oecol. 2002;23(6):375–83.
Kattge J, Diaz S, Lavorel S, Prentice C, Leadley P, Bonisch G, et al. TRY—a global database of plant traits. Global Change Biol. 2011;17(9):2905–35.
Broennimann O, Mráz P, Petitpierre B, Guisan A, Müller-Schärer H. Contrasting spatio-temporal climatic niche dynamics during the eastern and western invasions of spotted knapweed in North America. J Biogeogr. 2014;41(6):1126–36.