Combining phylogenetic and demographic inferences to assess the origin of the genetic diversity in an isolated wolf population
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
28489863
PubMed Central
PMC5425034
DOI
10.1371/journal.pone.0176560
PII: PONE-D-16-28498
Knihovny.cz E-zdroje
- MeSH
- fylogeneze MeSH
- genetická variace * MeSH
- genotyp * MeSH
- haplotypy MeSH
- mitochondriální DNA genetika MeSH
- populační genetika MeSH
- vlci genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Itálie MeSH
- Názvy látek
- mitochondriální DNA MeSH
The survival of isolated small populations is threatened by both demographic and genetic factors. Large carnivores declined for centuries in most of Europe due to habitat changes, overhunting of their natural prey and direct persecution. However, the current rewilding trends are driving many carnivore populations to expand again, possibly reverting the erosion of their genetic diversity. In this study we reassessed the extent and origin of the genetic variation of the Italian wolf population, which is expanding after centuries of decline and isolation. We genotyped wolves from Italy and other nine populations at four mtDNA regions (control-region, ATP6, COIII and ND4) and 39 autosomal microsatellites. Results of phylogenetic analyses and assignment procedures confirmed in the Italian wolves a second private mtDNA haplotype, which belongs to a haplogroup distributed mostly in southern Europe. Coalescent analyses showed that the unique mtDNA haplotypes in the Italian wolves likely originated during the late Pleistocene. ABC simulations concordantly showed that the extant wolf populations in Italy and in south-western Europe started to be isolated and declined right after the last glacial maximum. Thus, the standing genetic variation in the Italian wolves principally results from the historical isolation south of the Alps.
Departamento de Biologia Faculdade de Ciências Universidade do Porto Porto Portugal
Department 18 Section of Environmental Engineering Aalborg University Aalborg Denmark
Department of Biology and Ecology Ostrava University Ostrava Czech Republic
Department of Biology Biotechnical Faculty University of Ljubljana Ljubljana Slovenia
Department of Biology Faculty of Science University of Zagreb Zagreb Croatia
Department of Zoology Charles University Prague Prague Czech Republic
Department of Zoology Institute of Ecology and Earth Sciences University of Tartu Tartu Estonia
Faculty of Tropical AgriSciences Czech University of Life Sciences Prague Prague Czech Republic
Friends of the Earth Czech Republic Olomouc Branch Olomouc Czech Republic
Institute of Biodiversity and Ecosystem Research Bulgarian Academy of Sciences Sofia Bulgaria
Mammal Research Institute Polish Academy of Sciences Białowieża Poland
Zobrazit více v PubMed
Pereira HM. Rewilding European Landscapes. Pereira HM, Navarro L, editors. Springer International Publishing; 2015.
Crooks KR, Burdett CL, Theobald DM, Rondinini C, Boitani L. Global patterns of fragmentation and connectivity of mammalian carnivore habitat. Philos Trans R Soc B Biol Sci. 2011;366: 2642–2651. PubMed PMC
Linnell JDC, Swenson JE, Andersen R. Predators and people: conservation of large carnivores is possible at high human densities if management policy is favourable. Anim Conserv. 2001;4: 345–349.
Chapron G, Kaczensky P, Linnell JDC, von Arx M, Huber Đ, Andrén H, et al. Recovery of large carnivores in Europe’s modern human-dominated landscapes. Science. 2014;346: 1517–1519. 10.1126/science.1257553 PubMed DOI
Nei M, Maruyama T, Chakraborty R. The Bottleneck Effect and genetic variability in Populations. Evolution. 1975;29: 1–10. PubMed
Lacy RC. Loss of genetic diversity from managed populations: interacting effects of drift, mutation, immigration, selection, and population subdivision. Conserv Biol. 1987;1: 143–58.
Palstra FP, Fraser DJ. Effective/census population size ratio estimation: a compendium and appraisal. Ecol Evol. 2012; 2357–2365. 10.1002/ece3.329 PubMed DOI PMC
Bertorelle G, Benazzo A, Mona S. ABC as a flexible framework to estimate demography over space and time: some cons, many pros. Mol Ecol. 2010;19: 2609–2615. 10.1111/j.1365-294X.2010.04690.x PubMed DOI
Hoban S, Bertorelle G, Gaggiotti OE. Computer simulations: tools for population and evolutionary genetics. Nat Rev Genet. 2012;13: 110–122. 10.1038/nrg3130 PubMed DOI
Lohmueller KE, Albrechtsen A, Li Y, Kim SY, Korneliussen T, Vinckenbosch N, et al. Natural selection affects multiple aspects of genetic variation at putatively neutral sites across the human genome. PLoS Genet. 2011;7. PubMed PMC
Chapman JR, Nakagawa S, Coltman DW, Slate J, Sheldon BC. A quantitative review of heterozygosity-fitness correlations in animal populations. Mol Ecol. 2009;18: 2746–2765. 10.1111/j.1365-294X.2009.04247.x PubMed DOI
Boitani L. Wolf research and conservation in Italy. Biol Conserv. 1992;61: 1992.
Lucchini V, Galov A, Randi E. Evidence of genetic distinction and long-term population decline in wolves (Canis lupus) in the Italian Apennines. Mol Ecol. 2004;13: 523–536. PubMed
Boitani L. Wolf conservation and recovery In: Mech LD, Boitani L, editors. Wolves: behavior, ecology and conservation. The University of Chicago Press; 2003. pp. 317–340.
Galaverni M, Caniglia R, Fabbri E, Milanesi P, Randi E. One, no one, or one hundred thousand: how many wolves are there currently in Italy? Mammal Res. 2016;61: 13–24.
Pilot M, Dąbrowski MJ, Hayrapetyan V, Yavruyan EG, Kopaliani N, Tsingarska E, et al. Genetic variability of the grey wolf Canis lupus in the caucasus in comparison with Europe and the Middle East: Distinct or intermediary population? PLoS One. 2014;9. PubMed PMC
Silva PM. Historical demography and differentiation of the gray wolf (Canis lupus). Universidade do Porto, Portugal: 2016.
Randi E, Lucchini V, Christensen MF, Mucci N, Funk SM, Dolf G, et al. Mitochondrial DNA variability in Italian and east European wolves: Detecting the consequences of small population size and hybridization. Conserv Biol. 2000;14: 464–473.
Montana L, Caniglia R, Galaverni M, Fabbri E, Randi E. A new mitochondrial haplotype confirms the distinctiveness of the Italian wolf (Canis lupus) population. Mamm Biol—Zeitschrift für Säugetierkd. Elsevier GmbH; 2017;84: 30–34.
Randi E, Hulva P, Fabbri E, Galaverni M, Galov A, Kusak J, et al. Multilocus detection of wolf x dog hybridization in Italy, and guidelines for marker selection. PLoS One. 2014;9. PubMed PMC
Leonard JA, Echegaray J, Randi E, Vilà C. Impact of hybridization with domestic dogs on the conservation of wild canids In: Gompper ME, editor. Free-Ranging Dogs and Wildlife Conservation. Oxford University Press; 2014. pp. 170–184.
Hindrikson M, Männil P, Ozolins J, Krzywinski A, Saarma U. Bucking the Trend in Wolf-Dog Hybridization: First Evidence from Europe of Hybridization between Female Dogs and Male Wolves. PLoS One. 2012;7: 1–12. PubMed PMC
Longmire JL, Maltbie M, Baker RJ. Use of”lysis buffer” in DNA isolation and its implication for museum collections. Museum of Texas Tech University; 1997.
de Groot GA, Nowak C, Skrbinšek T, Andersen LW, Aspi J, Fumagalli L, et al. Decades of population genetic research reveal the need for harmonization of molecular markers: The grey wolf Canis lupus as a case study. Mamm Rev. 2015; 1–16.
Weir BS, Cockerham CC. Estimating F-statistics for the analysis of population structure. Evolution. 1984;1: 1358–1370. PubMed
Peakall R, Smouse PE. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics. 2012;28: 2537–2539. 10.1093/bioinformatics/bts460 PubMed DOI PMC
Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F. GENETIX 4.05, Population genetics software for Windows TM. Université de Montpellier II. Montpellier. 2004. 2004. p. 2004.
Jombart T, Ahmed I. adegenet 1.3–1: new tools for the analysis of genome-wide SNP data. Bioinformatics. 2011;27: 3070–3071. 10.1093/bioinformatics/btr521 PubMed DOI PMC
Pritchard JK, Stephens M, Donnelly P. Inference of Population Structure Using Multilocus Genotype Data. Genetics. 2000;155: 945–959. PubMed PMC
Hubisz MJ, Falush D, Stephens M, Pritchard JK. Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour. 2009;9: 1322–1332. 10.1111/j.1755-0998.2009.02591.x PubMed DOI PMC
Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol. 2005;14: 2611–2620. 10.1111/j.1365-294X.2005.02553.x PubMed DOI
Jakobsson M, Rosenberg NA. CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics. 2007;23: 1801–1806. 10.1093/bioinformatics/btm233 PubMed DOI
Fabbri E, Caniglia R, Kusak J, Galov A, Gomerčić T, Arbanasić H, et al. Genetic structure of expanding wolf (Canis lupus) populations in Italy and Croatia, and the early steps of the recolonization of the Eastern Alps. Mamm Biol—Zeitschrift für Säugetierkd. 2014;79: 138–148.
Björnerfeldt S, Webster MT, Vilà C. Relaxation of selective constraint on dog mitochondrial DNA following domestication. Genome Res. 2006;16: 990–994. 10.1101/gr.5117706 PubMed DOI PMC
Librado P, Rozas J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 2009;25: 1451–1452. 10.1093/bioinformatics/btp187 PubMed DOI
Nei M, Li W-H. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA. 1979;76: 5269–5273. PubMed PMC
Saitou N, Nei M. The Neighbor-joining Method: A New Method for Reconstructing Phylogenetic Trees. Mol Biol Evol. 1987;4: 406–425. PubMed
Felsenstein J. Evolutionary Trees from DNA Sequences: A Maximum Likelihood Approach. J Mol Evol. 1981;17: 368–376. PubMed
Rannala BH, Yang Z. Probability distribution of molecular evolutionary trees: A new method of phylogenetic inference. J Mol Evol. 1996;43: 304–311. PubMed
Swofford DL. PAUP* Phylogenetic Analysis Using Parsimony (*and other methods). Sinauer Associates, Sunderland; 2003. p. 2003.
Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, et al. MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space. Syst Biol. 2012;61: 539–542. 10.1093/sysbio/sys029 PubMed DOI PMC
Posada D, Crandall KA. MODELTEST: testing the model of DNA substitution. Bioinformatics. 1998;14: 817–818. PubMed
Akaike H. Information theory as an extension of the maximum likelihood principle. In: Petrov BN, Csaki F, editors. Second International Symposium on Information Theory. 1973. pp. 267–281.
Felsenstein J. Confidence Limits on Phylogenies: An Approach Using the Bootstrap. Evolution. 1985;39: 783–791. PubMed
Lanfear R, Calcott B, Ho SYW, Guindon S. PartitionFinder: Combined Selection of Partitioning Schemes and Substitution Models for Phylogenetic Analyses. Mol Biol Evol. 2012;29: 1695–1701. 10.1093/molbev/mss020 PubMed DOI
Larget B, Simon DL. Markov Chain Monte Carlo Algorithms for the Bayesian Analysis of Phylogenetic Trees. Mol Biol Evol. 1999;16: 750–759.
Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu C-H, Xie D, et al. BEAST 2: a software platform for bayesian evolutionary analysis. PLoS Comput Biol. 2014;10: 1–6. PubMed PMC
Heled J, Drummond AJ. Bayesian inference of population size history from multiple loci. BMC Evol Biol. 2008;8: 289 10.1186/1471-2148-8-289 PubMed DOI PMC
Beaumont MA, Zhang W, Balding DJ. Approximate Bayesian Computation in Population Genetics. Genetics. 2002;162: 2025–2035. PubMed PMC
Cornuet J-M, Pudlo P, Veyssier J, Dehne-Garcia A, Gautier M, Leblois R, et al. DIYABC v2.0: a software to make approximate Bayesian computation inferences about population history using single nucleotide polymorphism, DNA sequence and microsatellite data. Bioinformatics. 2014;30: 1187–1189. 10.1093/bioinformatics/btt763 PubMed DOI
Hindrikson M, Remm J, Männil P, Ozolins J, Tammeleht E, Saarma U. Spatial Genetic Analyses Reveal Cryptic Population Structure and Migration Patterns in a Continuously Harvested Grey Wolf (Canis lupus) Population in North-Eastern Europe. PLoS One. 2013;8: 1–12. PubMed PMC
Stronen AV, Jędrzejewska B, Pertoldi C, Demontis D, Randi E, Niedziałkowska M, et al. North-South Differentiation and a Region of High Diversity in European Wolves (Canis lupus). PLoS One. 2013;8: 1–9. PubMed PMC
Fan Z, Silva P, Gronau I, Wang S, Armero AS, Schweizer RM, et al. Worldwide patterns of genomic variation and admixture in gray wolves. Genome Res. 2016;26: 1–11. PubMed PMC
Cornuet J-M, Ravigné V, Estoup A. Inference on population history and model checking using DNA sequence and microsatellite data with the software DIYABC (v1.0). BMC Bioinformatics. 2010;11. PubMed PMC
Boggiano F, Ciofi C, Boitani L, Formia A, Grottoli L, Natali C, et al. Detection of an East European wolf haplotype puzzles mitochondrial DNA monomorphism of the Italian wolf population. Mamm Biol—Zeitschrift für Säugetierkd. Elsevier GmbH; 2013;78: 374–378.
Thalmann O, Shapiro B, Cui P, Schuenemann VJ, Sawyer SK, Greenfield DL, et al. Complete Mitochondrial Genomes of Ancient Canids Suggest a European Origin of Domestic Dogs. Science. 2013;342: 871–874. 10.1126/science.1243650 PubMed DOI
Pilot M, Branicki W, Jędrzejewski W, Goszczyński J, Jędrzejewska B, Dykyy I, et al. Phylogeographic history of grey wolves in Europe. BMC Evol Biol. 2010;10. PubMed PMC
Savolainen P, Zhang Y, Luo J, Lundeberg J, Leitner T. Genetic Evidence for an East Asian Origin of Domestic Dogs. Science. 2002;1610: 1610–1613. PubMed
Vilà C, Amorim IR, Leonard JA, Posada D, Castroviejo J, Petrucci-Fonseca F, et al. Mitochondrial DNA phylogeography and population history of the grey wolf Canis lupus. Mol Ecol. 1999;8: 2089–2103. PubMed
Skoglund P, Götherström A, Jakobsson M. Estimation of Population Divergence Times from Non- Overlapping Genomic Sequences: Examples from Dogs and Wolves. Mol Biol Evol. 2011;28: 1505–1517. 10.1093/molbev/msq342 PubMed DOI
Mech LD, Seal US. Premature reproductive activity in wild wolves. J Mammal. 1987;68: 871–873.
Hindrikson M, Remm J, Pilot M, Godinho R, Stronen AV, Baltrūnaitė L, et al. Wolf population genetics in Europe: a systematic review, meta-analysis and suggestions for conservation and management. Biol Rev. 2016; PubMed
Sastre N, Vilà C, Salinas M, Bologov V V, Urios V, Sánchez A, et al. Signatures of demographic bottlenecks in European wolf populations. Conserv Genet. 2011;12: 701–712.
Caniglia R, Fabbri E, Galaverni M, Milanesi P, Randi E. Noninvasive sampling and genetic variability, pack structure, and dynamics in an expanding wolf population. J Mammal. 2014;95: 41–59.
Koblmüller S, Vilà C, Lorente-Galdos B, Dabad M, Ramirez O, Marques-Bonet T, et al. Whole mitochondrial genomes illuminate ancient intercontinental dispersals of grey wolves (Canis lupus). J Biogeogr. 2016; 1–11.
Freedman AH, Gronau I, Schweizer RM, Ortega-Del Vecchyo D, Han E, Silva PM, et al. Genome Sequencing Highlights the Dynamic Early History of Dogs. PLoS Genet. 2014;10. PubMed PMC
Leonard JA, Vilà C, Fox-Dobbs K, Koch PL, Wayne RK, Van Valkenburgh B. Megafaunal Extinctions and the Disappearance of a Specialized Wolf Ecomorph. Curr Biol. 2007;17: 1146–1150. 10.1016/j.cub.2007.05.072 PubMed DOI
Flower LOH, Schreve DC. An investigation of palaeodietary variability in European Pleistocene canids. Quat Sci Rev. Elsevier Ltd; 2014;96: 188–203.
Leonard JA. Ecology drives evolution in grey wolves. Evol Ecol Res. 2014;16: 461–473.
Sandom C, Faurby S, Sandel B, Svenning J-C. Global late Quaternary megafauna extinctions linked to humans, not climate change. Proc R Soc B Biol Sci. 2014;281. PubMed PMC
Bartlett LJ, Williams DR, Prescott GW, Balmford A, Green RE, Eriksson A, et al. Robustness despite uncertainty: regional climate data reveal the dominant role of humans in explaining global extinctions of Late Quaternary megafauna. Ecography (Cop). 2015; 1–10.
Randi E. Genetics and conservation of wolves Canis lupus in Europe. Mamm Rev. 2011;41: 99–111.
Leonard JA, Vilà C, Wayne RK. Legacy lost: genetic variability and population size of extirpated US grey wolves (Canis lupus). Mol Ecol. 2005;14: 9–17. 10.1111/j.1365-294X.2004.02389.x PubMed DOI
Perri A. A wolf in dog’s clothing: Initial dog domestication and Pleistocene wolf variation. J Archaeol Sci. 2016;68: 1–4.
Morey DF. In search of Paleolithic dogs: A quest with mixed results. J Archaeol Sci. 2014;52: 300–307.