A Novel Role for the BMP Antagonist Noggin in Sensitizing Cells to Non-canonical Wnt-5a/Ror2/Disheveled Pathway Activation
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
28523267
PubMed Central
PMC5415574
DOI
10.3389/fcell.2017.00047
Knihovny.cz E-zdroje
- Klíčová slova
- BMP signaling, Ror2, Wnt5a, brachydactyly, noggin, non-canonical Wnt pathways,
- Publikační typ
- časopisecké články MeSH
Mammalian limb development is driven by the integrative input from several signaling pathways; a failure to receive or a misinterpretation of these signals results in skeletal defects. The brachydactylies, a group of overlapping inherited human hand malformation syndromes, are mainly caused by mutations in BMP signaling pathway components. Two closely related forms, Brachydactyly type B2 (BDB2) and BDB1 are caused by mutations in the BMP antagonist Noggin (NOG) and the atypical receptor tyrosine kinase ROR2 that acts as a receptor in the non-canonical Wnt pathway. Genetic analysis of Nog and Ror2 functional interaction via crossing Noggin and Ror2 mutant mice revealed a widening of skeletal elements in compound but not in any of the single mutants, thus indicating genetic interaction. Since ROR2 is a non-canonical Wnt co-receptor specific for Wnt-5a we speculated that this phenotype might be a result of deregulated Wnt-5a signaling activation, which is known to be essential for limb skeletal elements growth and patterning. We show that Noggin potentiates activation of the Wnt-5a-Ror2-Disheveled (Dvl) pathway in mouse embryonic fibroblast (MEF) cells in a Ror2-dependent fashion. Rat chondrosarcoma chondrocytes (RCS), however, are not able to respond to Noggin in this fashion unless growth arrest is induced by FGF2. In summary, our data demonstrate genetic interaction between Noggin and Ror2 and show that Noggin can sensitize cells to Wnt-5a/Ror2-mediated non-canonical Wnt signaling, a feature that in cartilage may depend on the presence of active FGF signaling. These findings indicate an unappreciated function of Noggin that will help to understand BMP and Wnt/PCP signaling pathway interactions.
Department of Biology Faculty of Medicine Masaryk UniversityBrno Czechia
Department of Cytokinetics Institute of Biophysics AS CR v v i Brno Czechia
Faculty of Sciences Institute of Experimental Biology Masaryk UniversityBrno Czechia
Institute for Chemistry and Biochemistry Freie Universität BerlinBerlin Germany
Zobrazit více v PubMed
Afzal A. R., Rajab A., Fenske C. D., Oldridge M., Elanko N., Ternes-Pereira E., et al. . (2000). Recessive robinow syndrome, allelic to dominant brachydactyly type B, is caused by mutation of ROR2. Nat. Genet. 25, 419–422. 10.1038/78107 PubMed DOI
Ahrens M. J., Li Y., Jiang H., Dudley A. T. (2009). Convergent extension movements in growth plate chondrocytes require gpi-anchored cell surface proteins. Development 136, 3463–3474. 10.1242/dev.040592 PubMed DOI PMC
Aikawa T., Segre G. V., Lee K. (2001). Fibroblast growth factor inhibits chondrocytic growth through induction of p21 and subsequent inactivation of cyclin E-Cdk2. J. Biol. Chem. 276, 29347–29352. 10.1074/jbc.M101859200 PubMed DOI
Bernatik O., Sedova K., Schille C., Ganji R. S., Cervenka I., Trantirek L., et al. . (2014). Functional analysis of dishevelled-3 phosphorylation identifies distinct mechanisms driven by casein kinase 1 and frizzled5. J. Biol. Chem. 289, 23520–23533. 10.1074/jbc.M114.590638 PubMed DOI PMC
Brunet L. J., McMahon J. A., McMahon A. P., Harland R. M. (1998). Noggin, cartilage morphogenesis, and joint formation in the mammalian skeleton. Science 280, 1455–1457. 10.1126/science.280.5368.1455 PubMed DOI
Bryja V., Andersson E. R., Schambony A., Esner M., Bryjova L., Biris K. K., et al. . (2009). The extracellular domain of Lrp5/6 inhibits noncanonical Wnt signaling in vivo. Mol. Biol. Cell 20, 924–936. 10.1091/mbc.E08-07-0711 PubMed DOI PMC
Buchtova M., Oralova V., Aklian A., Masek J., Vesela I., Ouyang Z., et al. . (2015). Fibroblast growth factor and canonical WNT/beta-catenin signaling cooperate in suppression of chondrocyte differentiation in experimental models of FGFR signaling in cartilage. Biochim. Biophys. Acta 1852, 839–850. 10.1016/j.bbadis.2014.12.020 PubMed DOI
Dailey L., Laplantine E., Priore R., Basilico C. (2003). A network of transcriptional and signaling events is activated by FGF to induce chondrocyte growth arrest and differentiation. J. Cell Biol. 161, 1053–1066. 10.1083/jcb.200302075 PubMed DOI PMC
Gao B., Song H., Bishop K., Elliot G., Garrett L., English M. A., et al. . (2011). Wnt signaling gradients establish planar cell polarity by inducing Vangl2 phosphorylation through Ror2. Dev. Cell 20, 163–176. 10.1016/j.devcel.2011.01.001 PubMed DOI PMC
Gonzalez-Sancho J. M., Greer Y. E., Abrahams C. L., Takigawa Y., Baljinnyam B., Lee K. H., et al. . (2013). Functional consequences of Wnt-induced dishevelled 2 phosphorylation in canonical and noncanonical Wnt signaling. J. Biol. Chem. 288, 9428–9437. 10.1074/jbc.M112.448480 PubMed DOI PMC
Grumolato L., Liu G., Mong P., Mudbhary R., Biswas R., Arroyave R., et al. . (2010). Canonical and noncanonical Wnts use a common mechanism to activate completely unrelated coreceptors. Genes Dev. 24, 2517–2530. 10.1101/gad.1957710 PubMed DOI PMC
Ho H. Y., Susman M. W., Bikoff J. B., Ryu Y. K., Jonas A. M., Hu L., et al. . (2012). Wnt-5a-Ror-Dishevelled signaling constitutes a core developmental pathway that controls tissue morphogenesis. Proc. Natl. Acad. Sci. U.S.A. 109, 4044–4051. 10.1073/pnas.1200421109 PubMed DOI PMC
Horton W. A., Hall J. G., Hecht J. T. (2007). Achondroplasia. Lancet 370, 162–172. 10.1016/S0140-6736(07)61090-3 PubMed DOI
Itasaki N., Hoppler S. (2010). Crosstalk between Wnt and bone morphogenic protein signaling: a turbulent relationship. Dev. Dyn. 239, 16–33. 10.1002/dvdy.22009 PubMed DOI
Krejci P., Aklian A., Kaucka M., Sevcikova E., Prochazkova J., Masek J. K., et al. . (2012). Receptor tyrosine kinases activate canonical WNT/beta-catenin signaling via MAP Kinase/LRP6 pathway and direct beta-catenin phosphorylation. PLoS ONE 7:e35826. 10.1371/journal.pone.0035826 PubMed DOI PMC
Krejci P., Masri B., Fontaine V., Mekikian P. B., Weis M., Prats H., et al. . (2005). Interaction of fibroblast growth factor and C-natriuretic peptide signaling in regulation of chondrocyte proliferation and extracellular matrix homeostasis. J. Cell Sci. 118, 5089–5100. 10.1242/jcs.02618 PubMed DOI
Krejci P., Murakami S., Prochazkova J., Trantirek L., Chlebova K., Ouyang Z., et al. . (2010). NF449 is a novel inhibitor of fibroblast growth factor receptor 3 (FGFR3) signaling active in chondrocytes and multiple myeloma cells. J. Biol. Chem. 285, 20644–20653. 10.1074/jbc.M109.083626 PubMed DOI PMC
Kuss P., Kraft K., Stumm J., Ibrahim D., Vallecillo-Garcia P., Mundlos S., et al. . (2014). Regulation of cell polarity in the cartilage growth plate and perichondrium of metacarpal elements by HOXD13 and WNT-5A. Dev. Biol. 385, 83–93. 10.1016/j.ydbio.2013.10.013 PubMed DOI
Lehmann K., Seemann P., Silan F., Goecke T. O., Irgang S., Kjaer K. W., et al. . (2007). A new subtype of brachydactyly type B caused by point mutations in the bone morphogenetic protein antagonist NOGGIN. Am. J. Hum. Genet. 81, 388–396. 10.1086/519697 PubMed DOI PMC
Lehmann K., Seemann P., Stricker S., Sammar M., Meyer B., Suring K., et al. . (2003). Mutations in bone morphogenetic protein receptor 1B cause brachydactyly type A2. Proc. Natl. Acad. Sci. U.S.A. 100, 12277–12282. 10.1073/pnas.2133476100 PubMed DOI PMC
Li Y., Dudley A. T. (2009). Noncanonical frizzled signaling regulates cell polarity of growth plate chondrocytes. Development 136, 1083–1092. 10.1242/dev.023820 PubMed DOI PMC
McMahon J. A., Takada S., Zimmerman L. B., Fan C. M., Harland R. M., McMahon A. P. (1998). Noggin-mediated antagonism of BMP signaling is required for growth and patterning of the neural tube and somite. Genes Dev. 12, 1438–1452. 10.1101/gad.12.10.1438 PubMed DOI PMC
Mikels A. J., Nusse R. (2006). Purified Wnt-5a protein activates or inhibits beta-catenin-TCF signaling depending on receptor context. PLoS Biol. 4:e115. 10.1371/journal.pbio.0040115 PubMed DOI PMC
Montero J. A., Ganan Y., Macias D., Rodriguez-Leon J., Sanz-Ezquerro J. J., Merino R., et al. . (2001). Role of FGFs in the control of programmed cell death during limb development. Development 128, 2075–2084. PubMed
Mukhopadhyay K., Lefebvre V., Zhou G., Garofalo S., Kimura J. H., de Crombrugghe B. (1995). Use of a new rat chondrosarcoma cell line to delineate a 119-base pair chondrocyte-specific enhancer element and to define active promoter segments in the mouse pro-alpha 1(II) collagen gene. J. Biol. Chem. 270, 27711–27719. 10.1074/jbc.270.46.27711 PubMed DOI
Mundlos S. (2000). Skeletal morphogenesis. Methods Mol. Biol. 136, 61–70. 10.1385/1-59259-065-9:61 PubMed DOI
Narimatsu M., Bose R., Pye M., Zhang L., Miller B., Ching P., et al. . (2009). Regulation of planar cell polarity by Smurf ubiquitin ligases. Cell 137, 295–307. 10.1016/j.cell.2009.02.025 PubMed DOI
Oishi I., Suzuki H., Onishi N., Takada R., Kani S., Ohkawara B., et al. . (2003). The receptor tyrosine kinase Ror2 is involved in non-canonical Wnt-5a/JNK signalling pathway. Genes Cells 8, 645–654. 10.1046/j.1365-2443.2003.00662.x PubMed DOI
Oldridge M., Fortuna A. M., Maringa M., Propping P., Mansour S., Pollitt C., et al. . (2000). Dominant mutations in ROR2, encoding an orphan receptor tyrosine kinase, cause brachydactyly type B. Nat. Genet. 24, 275–278. 10.1038/73495 PubMed DOI
Robert B. (2007). Bone morphogenetic protein signaling in limb outgrowth and patterning. Dev. Growth Differ. 49, 455–468. 10.1111/j.1440-169X.2007.00946.x PubMed DOI
Romereim S. M., Conoan N. H., Chen B., Dudley A. T. (2014). A dynamic cell adhesion surface regulates tissue architecture in growth plate cartilage. Development 141, 2085–2095. 10.1242/dev.105452 PubMed DOI PMC
Romereim S. M., Dudley A. T. (2011). Cell polarity: the missing link in skeletal morphogenesis? Organogenesis 7, 217–228. 10.4161/org.7.3.18583 PubMed DOI PMC
Sammar M., Sieber C., Knaus P. (2009). Biochemical and functional characterization of the Ror2/BRIb receptor complex. Biochem. Biophys. Res. Commun. 381, 1–6. 10.1016/j.bbrc.2008.12.162 PubMed DOI
Sammar M., Stricker S., Schwabe G. C., Sieber C., Hartung A., Hanke M., et al. . (2004). Modulation of GDF5/BRI-b signalling through interaction with the tyrosine kinase receptor Ror2. Genes Cells 9, 1227–1238. 10.1111/j.1365-2443.2004.00799.x PubMed DOI
Schambony A., Wedlich D. (2007). Wnt-5A/Ror2 regulate expression of XPAPC through an alternative noncanonical signaling pathway. Dev. Cell 12, 779–792. 10.1016/j.devcel.2007.02.016 PubMed DOI
Schille C., Bayerlova M., Bleckmann A., Schambony A. (2016). Ror2 signaling is required for local upregulation of GDF6 and activation of BMP signaling at the neural plate border. Development 143, 3182–3194. 10.1242/dev.135426 PubMed DOI
Schwabe G. C., Trepczik B., Suring K., Brieske N., Tucker A. S., Sharpe P. T., et al. . (2004). Ror2 knockout mouse as a model for the developmental pathology of autosomal recessive Robinow syndrome. Dev. Dyn. 229, 400–410. 10.1002/dvdy.10466 PubMed DOI
Schwarzer W., Witte F., Rajab A., Mundlos S., Stricker S. (2009). A gradient of ROR2 protein stability and membrane localization confers brachydactyly type B or Robinow syndrome phenotypes. Hum. Mol. Genet. 18, 4013–4021. 10.1093/hmg/ddp345 PubMed DOI
Stricker S., Mundlos S. (2011). Mechanisms of digit formation: human malformation syndromes tell the story. Dev. Dyn. 240, 990–1004. 10.1002/dvdy.22565 PubMed DOI
Stricker S., Rauschenberger V., Schambony A. (2017). ROR-Family Receptor Tyrosine Kinases. Curr. Top. Dev. Biol. 123, 105–142. 10.1016/bs.ctdb.2016.09.003 PubMed DOI
Takeuchi S., Takeda K., Oishi I., Nomi M., Ikeya M., Itoh K., et al. . (2000). Mouse Ror2 receptor tyrosine kinase is required for the heart development and limb formation. Genes Cells 5, 71–78. 10.1046/j.1365-2443.2000.00300.x PubMed DOI
ten Berge D., Brugmann S. A., Helms J. A., Nusse R. (2008). Wnt and FGF signals interact to coordinate growth with cell fate specification during limb development. Development 135, 3247–3257. 10.1242/dev.023176 PubMed DOI PMC
van Bokhoven H., Celli J., Kayserili H., van Beusekom E., Balci S., Brussel W., et al. . (2000). Mutation of the gene encoding the ROR2 tyrosine kinase causes autosomal recessive Robinow syndrome. Nat. Genet. 25, 423–426. 10.1038/78113 PubMed DOI
Wang B., Sinha T., Jiao K., Serra R., Wang J. (2011). Disruption of PCP signaling causes limb morphogenesis and skeletal defects and may underlie Robinow syndrome and brachydactyly type B. Hum. Mol. Genet. 20, 271–285. 10.1093/hmg/ddq462 PubMed DOI PMC
Witte F., Chan D., Economides A. N., Mundlos S., Stricker S. (2010). Receptor tyrosine kinase-like orphan receptor 2 (ROR2) and Indian hedgehog regulate digit outgrowth mediated by the phalanx-forming region. Proc. Natl. Acad. Sci. U.S.A. 107, 14211–14216. 10.1073/pnas.1009314107 PubMed DOI PMC
Yamaguchi T. P., Bradley A., McMahon A. P., Jones S. (1999). A Wnt-5a pathway underlies outgrowth of multiple structures in the vertebrate embryo. Development 126, 1211–1223. PubMed
Yang Y., Topol L., Lee H., Wu J. (2003). Wnt-5a and Wnt5b exhibit distinct activities in coordinating chondrocyte proliferation and differentiation. Development 130, 1003–1015. 10.1242/dev.00324 PubMed DOI
Zuniga A. (2015). Next generation limb development and evolution: old questions, new perspectives. Development 142, 3810–3820. 10.1242/dev.125757 PubMed DOI