Profiling of Campylobacter jejuni Proteome in Exponential and Stationary Phase of Growth
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
28572800
PubMed Central
PMC5435804
DOI
10.3389/fmicb.2017.00913
Knihovny.cz E-zdroje
- Klíčová slova
- Campylobacter jejuni, CosR, exponential phase, foodborne pathogen, growth, regulation, stationary phase,
- Publikační typ
- časopisecké články MeSH
Campylobacter jejuni has been reported as a major cause of bacterial food-borne enteritides in developed countries during the last decade. Despite its fastidious growth requirements, including low level of oxygen and high level of CO2, this pathogen is able to persist in the environment without permanent loss of its viability and virulence. As C. jejuni is not able to multiply outside a host, the cells spend significant amount of time in stationary phase of growth. The entry into the stationary phase is often correlated to resistance to various stresses in bacteria. The switching between exponential and stationary phases is frequently mediated by the regulator sigma S (RpoS). However, this factor is absent in C. jejuni and molecular mechanisms responsible for transition of cells to the stationary phase remain elusive. In this work, proteomic profiles of cells from exponential and stationary phases were compared using 2-D electrophoresis (2DE) fingerprinting combined with mass spectrometry analysis and qRT-PCR. The identified proteins, whose expression differed between the two phases, are mostly involved in protein biosynthesis, carbon metabolism, stress response and motility. Altered expression was observed also in the pleiotropic regulator CosR that was over-expressed during stationary phase. A shift between transcript and protein level evolution of CosR throughout the growth of C. jejuni was observed using qRT-PCR and (2DE). From these data, we hypothesized that CosR could undergo a negative autoregulation in stationary phase. A consensus sequence resulting from promoter sequence alignment of genes potentially regulated by CosR, including its own upstream region, among C. jejuni strains is proposed. To verify experimentally the potential autoregulation of CosR at the DNA level, electrophoretic mobility shift assay was performed with DNA fragments of CosR promoter region and rCosR. Different migration pattern of the promoter fragments indicates the binding capacity of CosR, suggesting its auto-regulation potential.
Zobrazit více v PubMed
Atack J. M., Kelly D. J. (2009). Oxidative stress in Campylobacter jejuni: responses, resistance and regulation. Future Microbiol. 4, 677–690. 10.2217/fmb.09.44 PubMed DOI
Batz M. B., Hoffmann S., Morris J. G. (2012). Ranking the disease burden of 14 pathogens in food sources in the United states using attribution data from outbreak investigations and expert elicitation. J. Food Prot. 75, 1278–1291. 10.4315/0362-028X.JFP-11-418 PubMed DOI
Beier D., Frank R. (2000). Molecular characterization of two-component systems of Helicobactcr pylori. J. Bacteriol. 182, 2068–2076. 10.1128/JB.182.8.2068-2076.2000 PubMed DOI PMC
Benito A., Ventoura G., Casadei M., Robinson T., Mackey B. (1999). Variation in resistance of natural isolates of Escherichia coli O157 to high hydrostatic pressure, mild heat, and other stresses. Appl. Environ. Microbiol. 65, 1564–1569. PubMed PMC
Bieche C., De Lamballerie M., Chevret D., Federighi M., Tresse O. (2012). Dynamic proteome changes in Campylobacter jejuni 81-176 after high pressure shock and subsequent recovery. J. Proteomics 75, 1144–1156. 10.1016/j.jprot.2011.10.028 PubMed DOI
Blaser M. J., Engberg J. (2008). Clinical aspects of Campylobacter jejuni and Campylobacter coli infections, in Campylobacter, 3rd Edn., eds Nachamkin I., Szymanski C., Blaser M. (Washington, DC: ASM Press; ), 99–121.
Bronowski C., James C. E., Winstanley C. (2014). Role of environmental survival in transmission of Campylobacter jejuni. FEMS Microbiol. Lett. 356, 8–19. 10.1111/1574-6968.12488 PubMed DOI
Cherchi C., Gu A. Z. (2011). Effect of bacterial growth stage on resistance to chlorine disinfection. Water Sci. Technol. 64, 7–13. 10.2166/wst.2011.536 PubMed DOI
Crooks G. E., Hon G., Chandonia J. M., Brenner S. E. (2004). WebLogo: a sequence logo generator. Genome Res. 14, 1188–1190. 10.1101/gr.849004 PubMed DOI PMC
Duval M., Simonetti A., Caldelari I., Marzi S. (2015). Multiple ways to regulate translation initiation in bacteria: mechanisms, regulatory circuits, dynamics. Biochimie 114C, 18–29. 10.1016/j.biochi.2015.03.007 PubMed DOI
EFSA ECDC (2015). The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2014. EFSA J. 13:191 10.2903/j.efsa.2015.4329 PubMed DOI PMC
Fields J. A., Li J., Gulbronson C. J., Hendrixson D. R., Thompson S. A. (2016). Campylobacter jejuni CsrA regulates metabolic and virulence associated proteins and is necessary for mouse colonization. PLoS ONE 11:e0156932. 10.1371/journal.pone.0156932 PubMed DOI PMC
Garenaux A., Guillou S., Ermel G., Wren B., Federighi M., Ritz M. (2008). Role of the Cj1371 periplasmic protein and the Cj0355c two-component regulator in the Campylobacter jejuni NCTC 11168 response to oxidative stress caused by paraquat. Res. Microbiol. 159, 718–726. 10.1016/j.resmic.2008.08.001 PubMed DOI
Gaynor E. C., Wells D. H., Mackichan J. K., Falkow S. (2005). The Campylobacter jejuni stringent response controls specific stress survival and virulence-associated phenotypes. Mol. Microbiol. 56, 8–27. 10.1111/j.1365-2958.2005.04525.x PubMed DOI
Gibney K. B., O'toole J., Sinclair M., Leder K. (2014). Disease burden of selected gastrointestinal pathogens in Australia, 2010. Int. J. Infect. Dis. 28, 176–185. 10.1016/j.ijid.2014.08.006 PubMed DOI
Gundogdu O., Da Silva D. T., Mohammad B., Elmi A., Wren B. W., Van Vliet A. H. M., et al. . (2016). The Campylobacter jejuni oxidative stress regulator RrpB is associated with a genomic hypervariable region and altered oxidative stress resistance. Front. Microbiol. 7:2117. 10.3389/fmicb.2016.02117 PubMed DOI PMC
Haddad N., Tresse O., Rivoal K., Chevret D., Nonglaton Q., Burns C. M., et al. . (2012). Polynucleotide phosphorylase has an impact on cell biology of Campylobacter jejuni. Front. Cell. Infect. Microbiol. 2:30. 10.3389/fcimb.2012.00030 PubMed DOI PMC
Hwang S., Kim M., Ryu S., Jeon B. (2011). Regulation of oxidative stress response by CosR, an essential response regulator in Campylobacter jejuni. PLoS ONE 6:22300. 10.1371/journal.pone.0022300 PubMed DOI PMC
Hwang S., Zhang Q. J., Ryu S., Jeon B. (2012). Transcriptional regulation of the CmeABC multidrug efflux pump and the KatA catalase by CosR in Campylobacter jejuni. J. Bacteriol. 194, 6883–6891. 10.1128/JB.01636-12 PubMed DOI PMC
Kalmokoff M., Lanthier P., Tremblay T. L., Foss M., Lau P. C., Sanders G., et al. . (2006). Proteomic analysis of Campylobacter jejuni 11168 biofilms reveals a role for the motility complex in biofilm formation. J. Bacteriol. 188, 4312–4320. 10.1128/JB.01975-05 PubMed DOI PMC
Kaur J., Ledward D. A., Park R. W. A., Robson R. L. (1998). Factors affecting the heat resistance of Escherichia coli O157: H7. Lett. Appl. Microbiol. 26, 325–330. 10.1046/j.1472-765X.1998.00339.x PubMed DOI
Kelly A. F., Martinez-Rodriguez A., Bovill R. A., Mackey B. M. (2003). Description of a “Phoenix” phenomenon in the growth of Campylobacter jejuni at temperatures close to the minimum for growth. Appl. Environ. Microbiol. 69, 4975–4978. 10.1128/AEM.69.8.4975-4978.2003 PubMed DOI PMC
Kelly A. F., Park S. F., Bovill R., Mackey B. M. (2001). Survival of Campylobacter jejuni during stationary phase: evidence for the absence of a phenotypic stationary-phase response. Appl. Environ. Microbiol. 67, 2248–2254. 10.1128/AEM.67.5.2248-2254.2001 PubMed DOI PMC
Kendall J. J., Barrero-Tobon A. M., Hendrixson D. R., Kelly D. J. (2014). Hemerythrins in the microaerophilic bacterium Campylobacter jejuni help protect key iron–sulphur cluster enzymes from oxidative damage. Environ. Microbiol. 16, 1105–1121. 10.1111/1462-2920.12341 PubMed DOI PMC
Konkel M. E., Klena J. D., Rivera-Amill V., Monteville M. R., Biswas D., Raphael B., et al. . (2004). Secretion of virulence proteins from Campylobacter jejuni is dependent on a functional flagellar export apparatus. J. Bacteriol. 186, 3296–3303. 10.1128/JB.186.11.3296-3303.2004 PubMed DOI PMC
Korlath J. A., Osterholm M. T., Judy L. A., Forfang J. C., Robinson R. A. (1985). A point-source outbreak of campylobacteriosis associated with consumption of raw-milk. J. Infect. Dis. 152, 592–596. 10.1093/infdis/152.3.592 PubMed DOI
Lawhon S. D., Frye J. G., Suyemoto M., Porwollik S., McClelland M., Altier C. (2003). Global regulation by CsrA in Salmonella typhimurium. Mol. Microbiol. 48, 1633–1645. 10.1046/j.1365-2958.2003.03535.x PubMed DOI
Lin J. (2009). Novel approaches for Campylobacter control in poultry. Foodborne Pathog. Dis. 6, 755–765. 10.1089/fpd.2008.0247 PubMed DOI PMC
Llorens J. M. N., Tormo A., Martinez-Garcia E. (2010). Stationary phase in gram-negative bacteria. FEMS Microbiol. Rev. 34, 476–495. 10.1111/j.1574-6976.2010.00213.x PubMed DOI
Maier T., Güell M., Serrano L. (2009). Correlation of mRNA and protein in complex biological samples. FEBS Lett. 583, 3966–3973. 10.1016/j.febslet.2009.10.036 PubMed DOI
Mangen M.-J. J., Bouwknegt M., Friesema I. H. M., Haagsma J. A., Kortbeek L. M., Tariq L., et al. . (2015). Cost-of-illness and disease burden of food-related pathogens in the Netherlands, 2011. Int. J. Food Microbiol. 196, 84–93. 10.1016/j.ijfoodmicro.2014.11.022 PubMed DOI
Martinez-Garcia E., Tormo A., Navarro-Llorens J. (2001). Further studies on RpoS in enterobacteria: identification of rpoS in Enterobacter cloacae and Kluyvera cryocrescens. Arch. Microbiol. 175, 395–404. 10.1007/s002030100277 PubMed DOI
Muller S., Pflock M., Schar J., Kennard S., Beier D. (2007). Regulation of expression of atypical orphan response regulators of Helicobacter pylori. Microbiol. Res. 162, 1–14. 10.1016/j.micres.2006.01.003 PubMed DOI
Nachamkin I. (2002). Chronic effects of Campylobacter infection. Microbes Infect. 4, 399–403. 10.1016/S1286-4579(02)01553-8 PubMed DOI
Nachamkin I., Bohachick K., Patton C. M. (1993). Flagellin gene typing of Campylobacter jejuni by restriction fragment length polymorphism analysis. J. Clin. Microbiol. 31, 1531–1536. PubMed PMC
Nahvi A., Barrick J. E., Breaker R. R. (2004). Coenzyme B-12 riboswitches are widespread genetic control elements in prokaryotes. Nucleic Acids Res. 32, 143–150. 10.1093/nar/gkh167 PubMed DOI PMC
Oh E., Jeon B. (2014). Role of alkyl hydroperoxide reductase (AhpC) in the biofilm formation of Campylobacter jejuni. PLoS ONE 9:e87312. 10.1371/journal.pone.0087312 PubMed DOI PMC
Parkhill J., Wren B. W., Mungall K., Ketley J. M., Churcher C., Basham D., et al. . (2000). The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature 403, 665–668. 10.1038/35001088 PubMed DOI
Pope J. E., Krizova A., Garg A. X., Thiessen-Philbrook H., Ouimet J. A. (2007). Campylobacter reactive arthritis: a systematic review. Semin. Arthritis Rheum. 37, 48–55. 10.1016/j.semarthrit.2006.12.006 PubMed DOI PMC
Raiger-Iustman L. J., Ruiz J. A. (2008). The alternative sigma factor, sigma(S), affects polyhydroxyalkanoate metabolism in Pseudomonas putida. FEMS Microbiol. Lett. 284, 218–224. 10.1111/j.1574-6968.2008.01203.x PubMed DOI
Rodriguez G. L. A., Ruigomez A., Panes J. (2006). Acute gastroenteritis is followed by an increased risk of inflammatory bowel disease. Gastroenterology 130, 1588–1594. 10.1053/j.gastro.2006.02.004 PubMed DOI
Romeo T. (1998). Global regulation by the small RNA-binding protein CsrA and the non-coding RNA molecule CsrB. Mol. Microbiol. 29, 1321–1330. 10.1046/j.1365-2958.1998.01021.x PubMed DOI
Rosenfeld N., Elowitz M. B., Alon U. (2002). Negative autoregulation speeds the response times of transcription networks. J. Mol. Biol. 323, 785–793. 10.1016/S0022-2836(02)00994-4 PubMed DOI
Salloway S., Mermel L. A., Seamans M., Aspinall G. O., Shin J. E. N., Kurjanczyk L. A., et al. . (1996). Miller-fisher syndrome associated with Campylobacter jejuni bearing lipopolysaccharide molecules that mimic human ganglioside GD3. Infect. Immun. 64, 2945–2949. PubMed PMC
Savageau M. A. (1974). Comparison of classical and autogenous systems of regulation in inducible operons. Nature 252, 546–549. 10.1038/252546a0 PubMed DOI
Saxena M., John B., Mu M., Van T. T. H., Taki A., Coloe P. J., et al. (2013). Strategies to reduce Campylobacter colonisation in chickens. Procedia Vaccinol. 7, 40–43. 10.1016/j.provac.2013.06.008 DOI
Schar J., Sickmann A., Beier D. (2005). Phosphorylation-independent activity of atypical response regulators of Helicobacter pylori. J. Bacteriol. 187, 3100–3109. 10.1128/JB.187.9.3100-3109.2005 PubMed DOI PMC
Shen-Orr S. S., Milo R., Mangan S., Alon U. (2002). Network motifs in the transcriptional regulation network of Escherichia coli. Nat. Genet. 31, 64–68. 10.1038/ng881 PubMed DOI
Stahl M., Stintzi A. (2011). Identification of essential genes in C. jejuni genome highlights hyper-variable plasticity regions. Funct. Integr. Genomics 11, 241–257. 10.1007/s10142-011-0214-7 PubMed DOI
Svensson S. L., Pryjma M., Gaynor E. C. (2014). Flagella-mediated adhesion and extracellular DNA release contribute to biofilm formation and stress tolerance of Campylobacter jejuni. PLoS ONE 9:e106063. 10.1371/journal.pone.0106063 PubMed DOI PMC
Turonova H., Briandet R., Rodrigues R., Hernould M., Hayek N., Stintzi A., et al. . (2015). Biofilm spatial organization by the emerging pathogen Campylobacter jejuni: comparison between NCTC 11168 and 81-176 strains under microaerobic and oxygen-enriched conditions. Front. Microbiol. 6:709. 10.3389/fmicb.2015.00709 PubMed DOI PMC
Velayudhan J., Kelly D. J. (2002). Analysis of gluconeogenic and anaplerotic enzymes in Campylobacter jejuni: an essential role for phosphoenolpyruvate carboxykinase. Microbiology 148, 685–694. 10.1099/00221287-148-3-685 PubMed DOI
Weber H., Polen T., Heuveling J., Wendisch V. F., Hengge R. (2005). Genome-wide analysis of the general stress response network in Escherichia coli: sigma(S)-dependent genes, promoters, and sigma factor selectivity. J. Bacteriol. 187, 1591–1603. 10.1128/JB.187.5.1591-1603.2005 PubMed DOI PMC
Whiley H., van den Akker B., Giglio S., Bentham R. (2013). The role of environmental reservoirs in human Campylobacteriosis. Int. J. Environ. Res. Public Health 10, 5886–5907. 10.3390/ijerph10115886 PubMed DOI PMC
Wosten M., Wagenaar J. A., van Putten J. P. M. (2004). The FlgS/FlgR two-component signal transduction system regulates the fla regulon in Campylobacter jejuni. J. Biol. Chem. 279, 16214–16222. 10.1074/jbc.M400357200 PubMed DOI
Wright J. A., Grant A. J., Hurd D., Harrison M., Guccione E. J., Kelly D. J., et al. . (2009). Metabolite and transcriptome analysis of Campylobacter jejuni in vitro growth reveals a stationary-phase physiological switch. Microbiology 155, 80–94. 10.1099/mic.0.021790-0 PubMed DOI