Mesorhizobium bacterial strains isolated from the legume Lotus corniculatus are an alternative source for the production of polyhydroxyalkanoates (PHAs) to obtain bioplastics
Language English Country Germany Media print-electronic
Document type Journal Article
PubMed
28593540
DOI
10.1007/s11356-017-9319-4
PII: 10.1007/s11356-017-9319-4
Knihovny.cz E-resources
- Keywords
- 3-hydroxybutyrate (3HB), 3-hydroxydodecanoate (3HDD), 3-hydroxyhexadecanoate (3HDD), 3-hydroxyvalerate (3HV), Bioplastic, Lotus corniculatus, Mesorhizobium, PHB,
- MeSH
- Fabaceae MeSH
- Phylogeny MeSH
- Lotus * MeSH
- Mesorhizobium * MeSH
- Polyesters MeSH
- Polyhydroxyalkanoates * MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Polyesters MeSH
- Polyhydroxyalkanoates * MeSH
Polyhydroxyalkanoic acids (PHAs) are natural polyesters that can be used to produce bioplastics which are biodegradable. Numerous microorganisms accumulate PHAs as energy reserves. Combinations of different PHAs monomers lead to the production of bioplastics with very different properties. In the present work, we show the capability of strains belonging to various phylogenetic lineages within the genus Mesorhizobium, isolated from Lotus corniculatus nodules, to produce different PHA monomers. Among our strains, we found the production of 3-hydroxybutyrate, 3-hydroxyvalerate, 3-hydroxydodecanoate, and 3-hydroxyhexadecanoate. Most of the PHA-positive strains were phylogenetically related to the species M. jarvisii. However, our findings suggest that the ability to produce different monomers forming PHAs is strain-dependent.
Departamento de Microbiología y Genética Universidad de Salamanca Salamanca Spain
Instituto Hispano Luso de Investigaciones Agrarias Salamanca Spain
Mikrobiologický ústav Akademie věd České republiky Prague Czech Republic
Přírodovědecká fakulta Univerzita Karlova Prague Czech Republic
Unidad Asociada Universidad de Salamanca CSIC Salamanca Spain
See more in PubMed
Curr Opin Microbiol. 2003 Jun;6(3):251-60 PubMed
Mol Biol Evol. 1987 Jul;4(4):406-25 PubMed
Biochem J. 1972 Aug;128(5):1193-201 PubMed
Int Microbiol. 2006 Jun;9(2):95-102 PubMed
Biotechnol Lett. 2003 Jan;25(2):115-9 PubMed
Mol Biol Evol. 2011 Oct;28(10):2731-9 PubMed
Arch Microbiol. 1999 Jan;171(2):73-80 PubMed
Biomaterials. 2005 Nov;26(33):6565-78 PubMed
Microbiology. 1995 Oct;141 ( Pt 10):2553-9 PubMed
Microbiol Res. 2001;156(3):201-7 PubMed
Syst Appl Microbiol. 2014 Mar;37(2):140-8 PubMed
Appl Environ Microbiol. 1988 Aug;54(8):1977-82 PubMed
J Gen Appl Microbiol. 2012;58(3):173-82 PubMed
Int J Biomater. 2013;2013:752821 PubMed
Electrophoresis. 2001 Apr;22(6):1086-9 PubMed
Int J Syst Evol Microbiol. 2000 Mar;50 Pt 2:787-801 PubMed
Lett Appl Microbiol. 2007 Feb;44(2):181-7 PubMed
Appl Microbiol Biotechnol. 2006 Jul;71(4):377-86 PubMed
Curr Microbiol. 2012 Nov;65(5):589-94 PubMed
Syst Appl Microbiol. 2002 Oct;25(3):326-31 PubMed
Nat Prod Rep. 2003 Oct;20(5):445-57 PubMed
Int J Syst Evol Microbiol. 2012 Mar;62(Pt 3):716-21 PubMed
Int J Biol Macromol. 2016 Aug;89:161-74 PubMed
J Appl Microbiol. 2007 Jul;103(1):204-9 PubMed
J Appl Microbiol. 2002;92(4):776-83 PubMed
Microb Biotechnol. 2014 Jul;7(4):278-93 PubMed
Int J Syst Evol Microbiol. 2001 Nov;51(Pt 6):2037-48 PubMed
Pharm Res. 1994 Mar;11(3):388-92 PubMed