Gridding discretization-based multiple stability switching delay search algorithm: The movement of a human being on a controlled swaying bow
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
28594904
PubMed Central
PMC5464654
DOI
10.1371/journal.pone.0178950
PII: PONE-D-16-04363
Knihovny.cz E-zdroje
- MeSH
- algoritmy * MeSH
- lidé MeSH
- pohyb fyziologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Delay represents a significant phenomenon in the dynamics of many human-related systems-including biological ones. It has i.a. a decisive impact on system stability, and the study of this influence is often mathematically demanding. This paper presents a computationally simple numerical gridding algorithm for the determination of stability margin delay values in multiple-delay linear systems. The characteristic quasi-polynomial-the roots of which decide about stability-is subjected to iterative discretization by means of pre-warped bilinear transformation. Then, a linear and a quadratic interpolation are applied to obtain the associated characteristic polynomial with integer powers. The roots of the associated characteristic polynomial are closely related to the estimation of roots of the original characteristic quasi-polynomial which agrees with the system's eigenvalues. Since the stability border is crossed by the leading one, the switching root locus is enhanced using the Regula Falsi interpolation method. Our methodology is implemented on-and verified by-a numerical bio-cybernetic example of the stabilization of a human-being's movement on a controlled swaying bow. The advantage of the proposed novel algorithm lies in the possibility of the rapid computation of polynomial zeros by means of standard programs for technical computing; in the low level of mathematical knowledge required; and, in the sufficiently high precision of the roots loci estimation. The relationship to the direct search QuasiPolynomial (mapping) Rootfinder algorithm and computational complexity are discussed as well. This algorithm is also applicable for systems with non-commensurate delays.
Zobrazit více v PubMed
Abusaksaka AB and Partington JR. BIBO stability of some classes of delay systems and fractional systems. Syst Control Lett. 2014; 64: 43–46. 10.1016/j.sysconle.2013.11.009 DOI
Bonnet C, Fioravanti AR and Partington JR. Stability of neutral systems with commensurate delays and poles asymptotic to the imaginary axis. SIAM J Control Optim. 2011(2); 49: 498–516. 10.1137/090776275 DOI
Gu K, Kharitonov VL, Chen J. Stability of time-delay systems. 2nd ed Boston: Birkhäuser; 2003.
Michiels W and Niculescu SI. Stability and stabilization of time-delay Systems. 1st ed Philadelphia: SIAM; 2007.
Chiasson J, Loiseau JJ, editors. Applications of time delay systems. 1st ed New York: Springer; 2007.
Sipahi R, Vyhlídal T, Niculescu SI, Pepe P, editors. Time delay systems: Methods, applications and new trends. 1st ed New York: Springer; 2012.
Zhang W, Branicky MS, Phillips SM. Stability of networked control systems. IEEE Contr Syst Mag. 2001; 21(1): 84–99. 10.1109/37.898794 DOI
Wibral M, Pampu M, Priesemann V, Siebenhünher F, Siewert H, Linder M, et al. Measuring information-transfer delays. PLoS ONE. 2013; 8(2): e55809 10.1371/journal.pone.0055809 PubMed DOI PMC
Saha DJ, Morasso P. Stabilization strategies for unstable dynamics. PLoS ONE. 2012; 7(1): e30301 10.1371/journal.pone.0030301 PubMed DOI PMC
Suzuki Y, Nomura T, Casadio M, Morasso P, Intermittent control with ankle, hip, and mixed strategies during quietstanding: A theoretical proposal based on a double inverted pendulum model. J Theor Biol. 2012; 310: 55–79. 10.1016/j.jtbi.2012.06.019 PubMed DOI
Zenzeri J, De Santis D, Morasso P. Strategy switching in the stabilization of unstable dynamics. PLoS ONE. 2014; 9(6): e99087 10.1371/journal.pone.0099087 PubMed DOI PMC
Orosz G, Wilson RE, Stepan G. Traffic jams: dynamics and control. Phil Trans R Soc A. 2010; 368: 4455–4479. 10.1098/rsta.2010.0205 PubMed DOI
Asai Y, Tasaka Y, Nomura K, Nomura T, Casadio M, Morasso P, et al. A model of postural control in quiet standing: Robust compensation of delay-induced instability using intermittent activation of feedback control. PLoS ONE. 2009; 4(7): e6169 10.1371/journal.pone.0006169 PubMed DOI PMC
Li X, De Souza CE. Delay-dependent robust stability and stabilization of uncertain linear delay systems: A linear matrix inequality approach. IEEE T Automat Contr. 1997; 42(8): 1144–1148. 10.1109/9.618244 DOI
Pepe P, Jiang ZP. A Lyapunov—Krasovskii methodology for ISS and iISS of time-delay systems. Syst Control Lett. 2006; 55(12): 1006–1014. 10.1016/j.sysconle.2006.06.013 DOI
Cao J. Improved delay-dependent exponential stability criteria for time-delay system. J Franklin Inst. 2013; 350: 790–801.
Talebi S, Ataei M, Ekramian M. Guaranteed interval of delay for a class of non-linear control systems. T I Meas Control 2015; 38(3): 365–369. 10.1177/0142331215576989 DOI
Zhu XL, Yang GH. Jensen inequality approach to stability analysis of discrete-time systems with time-varying delay. In: Proceedings of American Control Conference; 2008 June 11–13; Seattle, WA. p. 1644–1649.
Moon YS, Park P, Kwon WH, Lee YS. Delay dependent robust stabilization of uncertain state-delayed systems. Int J Control. 2001; 74(14): 1447–1455. 10.1080/00207170110067116 DOI
Fridman E, Shaked U. A descriptor system approach to H1 control of linear time-delay systems. IEEE T Automat Contr. 2002; 47(2): 253–270. 10.1109/9.983353 DOI
Xu S, Lam J, Zou Y. Simplified descriptor system approach to delay-dependent stability and performance analyses for time-delay systems. IEE P-Contr Theor Ap. 2005; 152(2): 147–151. 10.1049/ip-cta:20045023 DOI
Kwon OM, Park MJ, Park JH, Lee SM, Cha EJ. Improved robust stability criteria for uncertain discrete-time systems with interval time-varying delays via new zero equalities. IET Control Theory A. 2012; 6(16): 2567–2575. 10.1049/iet-cta.2012.0257 DOI
Zhang Q, Niu Y, Wang L, Shen L, Zhu H. Average consensus seeking of high-order continuous-time multi-agent systems with multiple time-varying communication delays. Int J Control Autom Syst. 2011. 9: 1209–1218. 10.1007/s12555-011-0623-3 DOI
Yu H, Xia X, Zhang T. A less conservative method for average consensus with multiple time-varying delays In: Proceedings of IEEE Africon; 2011. September 13–15; Livingstone, Zambia; 2011. p. 423–429.
Shang Y. Continuous-time average consensus under dynamically changing topologies and multiple time-varying delays. Appl Math Comput. 2014; 244: 1745–1757. 10.1016/j.amc.2014.07.019 DOI
Shang Y. Average consensus in multi-agent systems with uncertain topologies and multiple time-varying delays. Linear Algebra Appl. 2014; 459: 411–429. 10.1016/j.laa.2014.07.019 DOI
Gahinet P, Nemirovski A, Laub AJ, Chilali M. LMI Control Toolbox User’s Guide, The Math Works, Natick, MA, 1995.
Sönmez S, Ayasun S, Nwankpa CO. An exact method for computing delay margin for stability of load frequency control systems with constant communication delays. IEEE T Power Syst. 2015; 31(1): 370–377. 10.1109/TPWRS.2015.2403865 DOI
Rekasius ZV. A stability test for systems with delays. In: Proceedings of the Joint Automatic Control Conference; 1980 December; San Francisco, CA; Amer. Inst. of Chemical Engineers; 1980. Paper no: TP9-A.
Olgac N, Sipahi R. A practical method for analyzing the stability of neutral type LTI-time delayed systems. Automatica. 2004; 40(5): 847–853. 10.1016/j.automatica.2003.12.010 DOI
Delice II, Sipahi R. Delay-independent stability test for systems with multiple-delays. IEEE T Automat Contr. 2012, 57(4): 963–972. 10.1109/TAC.2011.2168992 DOI
Xu Q, Stepan G, Wang Z. Delay-dependent stability analysis by using delay-independent integral evaluation. Automatica 2016; 70(C): 153–157. 10.1016/j.automatica.2016.03.028 DOI
Chen J, Gu G, Nett CN. A new method for computing delay margins for stability of linear delay systems. Syst Control Lett. 1995; 26(2): 107–117. 10.1016/0167-6911(94)00111-8 DOI
Walton KE, Marshall JE. Direct method for TDS stability analysis. IEE P-Contr Theor Ap. 1987; 134(2): 101–107.
Ayasun S, Gelen A. Stability analysis of a generator excitation control system with time delays. Electr Eng. 2010; 91(6): 347–355. 10.1007/s00202-009-0142-x DOI
Ji JC. Stability and bifurcation in an electromechanical system with time delays. Mech Res Commun. 2003; 30(3): 217–225. 10.1016/S0093-6413(03)00006-5 DOI
Song Y, Peng Y. Stability and bifurcation analysis on a logistic model with discrete and distributed delays. Appl Math Comput. 2006; 181(2): 1745–1757. 10.1016/j.amc.2006.03.025 DOI
Oppenheim A. Discrete time signal processing. Upper Saddle River, NJ: Pearson Higher Education; 2010.
Zítek P, Kučera V, Vyhlídal T. Meromorphic observer-based pole assignment in time delay systems. Kybernetika. 2008; 44(5): 633–648.
Varszegi B, Takacs D, Stepan G, Hogan SJ. Stabilizing skateboard speed-wobble with reflex delay, J R Soc Interface. 2016; 13(121): 20160345 10.1098/rsif.2016.0345 PubMed DOI PMC
Vyhlídal T, Zítek P. Quasipolynomial mapping algorithm rootfinder for analysis of time delay systems. In: Proceedings of the IFAC Workshop on Time-Delay Systems (TDS 2003); 2003 September 8–10; Rocquencourt, France. Rocquencourt: INRIA; 2003. p. 1–6.
Vyhlídal T, Zítek P. Mapping based algorithm for large-scale computation of quasipolynomial zeros. IEEE T Automat Contr. 2009; 54(1): 171–177. 10.1109/TAC.2008.2008345 DOI
Vyhlídal T, Zítek P . QPmR—Quasi-polynomial root-finder: Algorithm update and examples In: Vyhlídal T, Lafay JF, Sipahi R, editors. Delay systems: From theory to numerics and applications. New York: Springer; 2014. p. 299–312. 10.1007/978-3-319-01695-5_22 DOI
Hale JK, Verduyn Lunel SM. Introduction to Functional Differential Eqs. 1st ed New York: Springer; 1993.
Vanbiervliet T, Verheyden K, Michiels W, Vandewalle S. A nonsmooth optimization approach for the stabilization of time-delay systems. ESAIM Contr Optim Ca. 2008; 14(3): 478–493. 10.1051/cocv:2007060 DOI
Burke J, Lewis AS, Overton ML. A robust gradient sampling algorithm for nonsmooth, nonconvex optimization. SIAM J Optim. 2005; 15(3): 751–779. 10.1137/030601296 DOI
Walton KE, Marshall JE. Direct method for TDS stability analysis. IEE Proc-D. 1987. 134(2): 101–107.
Pekař L, Prokop R. Algebraic optimal control in RMS ring: A case study. Int J Math Comput Simulat. 2013; 7(1): 59–68.
Balátě J. [Automatic control]. 1st ed Prague: BEN Publishing; 2004. Czech.
Bellmann R, Cooke KL. Differential-difference Equations. New York: Academic Press; 1969.