• This record comes from PubMed

100 million years of multigene family evolution: origin and evolution of the avian MHC class IIB

. 2017 Jun 13 ; 18 (1) : 460. [epub] 20170613

Language English Country Great Britain, England Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Links

PubMed 28610613
PubMed Central PMC5470263
DOI 10.1186/s12864-017-3839-7
PII: 10.1186/s12864-017-3839-7
Knihovny.cz E-resources

BACKGROUND: Gene duplication has led to a most remarkable adaptation involved in vertebrates' host-pathogen arms-race, the major histocompatibility complex (MHC). However, MHC duplication history is as yet poorly understood in non-mammalian vertebrates, including birds. RESULTS: Here, we provide evidence for the evolution of two ancient avian MHC class IIB (MHCIIB) lineages by a duplication event prior to the radiation of all extant birds >100 million years ago, and document the role of concerted evolution in eroding the footprints of the avian MHCIIB duplication history. CONCLUSIONS: Our results suggest that eroded footprints of gene duplication histories may mimic birth-death evolution and that in the avian MHC the presence of the two lineages may have been masked by elevated rates of concerted evolution in several taxa. Through the presence of a range of intermediate evolutionary stages along the homogenizing process of concerted evolution, the avian MHCIIB provides a remarkable illustration of the erosion of multigene family duplication history.

Comment In

PubMed

See more in PubMed

Ota T, Nei M. Divergent evolution and evolution by the birth-and-death process in the immunoglobulin VH gene family. Mol Biol Evol. 1994;11(3):469–482. PubMed

Nei M, Gu X, Sitnikova T. Evolution by the birth-and-death process in multigene families of the vertebrate immune system. Proc Natl Acad Sci U S A. 1997;94(15):7799–7806. doi: 10.1073/pnas.94.15.7799. PubMed DOI PMC

Su C, Nei M. Evolutionary dynamics of the T-cell receptor VB gene family as inferred from the human and mouse genomic sequences. Mol Biol Evol. 2001;18(4):503–513. doi: 10.1093/oxfordjournals.molbev.a003829. PubMed DOI

Ohta T. Allelic and nonallelic homology of a supergene family. Proc Natl Acad Sci U S A. 1982;79(10):3251–3254. doi: 10.1073/pnas.79.10.3251. PubMed DOI PMC

Ohta T. On the evolution of multigene families. Theor Popul Biol. 1983;23(2):216–240. doi: 10.1016/0040-5809(83)90015-1. PubMed DOI

Hughes AL, Nei M. Evolutionary relationships of class II major-histocompatibility-complex genes in mammals. Mol Biol Evol. 1990;7(6):491–514. PubMed

Takahashi K, Rooney AP, Nei M. Origins and divergence times of mammalian class II MHC gene clusters. J Hered. 2000;91(3):198–204. doi: 10.1093/jhered/91.3.198. PubMed DOI

Kriener K, CO O’hU, Tichy H, Klein J. Convergent evolution of major histocompatibility complex molecules in humans and new world monkeys. Immunogenetics. 2000;51(3):169–178. doi: 10.1007/s002510050028. PubMed DOI

Burri R, Salamin N, Studer RA, Roulin A, Fumagalli L. Adaptive divergence of ancient gene duplicates in the avian MHC Class II B. Mol Biol Evol. 2010;27(10):2360–2374. doi: 10.1093/molbev/msq120. PubMed DOI

Nei M, Rooney AP. Concerted and birth-and-death evolution of multigene families. Annu Rev Genet. 2005;39(1):121–152. doi: 10.1146/annurev.genet.39.073003.112240. PubMed DOI PMC

Yuhki N, Beck T, Stephens RM, Nishigaki Y, Newmann K, O'Brien SJ. Comparative genome organization of human, murine, and feline MHC Class II region. Genome Res. 2003;13(6a):1169–1179. doi: 10.1101/gr.976103. PubMed DOI PMC

Andersson L, Rask L. Characterization of the MHC class II region in cattle. The number of DQ genes varies between haplotypes. Immunogenetics. 1988;27(2):110–120. doi: 10.1007/BF00351084. PubMed DOI

Burri R, Niculita-Hirzel H, Salamin N, Roulin A, Fumagalli L. Evolutionary patterns of MHC class II B in owls and their implications for the understanding of avian MHC evolution. Mol Biol Evol. 2008;25(6):1180–1191. doi: 10.1093/molbev/msn065. PubMed DOI

Wittzell H, Bernot A, Auffray C, Zoorob R. Concerted evolution of two Mhc class II B loci in pheasants and domestic chickens. Mol Biol Evol. 1999;16(4):479–490. doi: 10.1093/oxfordjournals.molbev.a026130. PubMed DOI

Hess CM, Gasper J, Hoekstra HE, Hill CE, Edwards SV. MHC class II pseudogene and genomic signature of a 32-kb cosmid in the house finch (Carpodacus mexicanus) Genome Res. 2000;10:613–623. doi: 10.1101/gr.10.5.613. PubMed DOI PMC

Edwards SV, Gasper J, March M. Genomics and polymorphism of Agph-DAB1, an Mhc class II B gene in red-winged blackbirds (Agelaius phoeniceus) Mol Biol Evol. 1998;15:236–250. doi: 10.1093/oxfordjournals.molbev.a025921. PubMed DOI

Edwards SV, Hess CM, Gasper J, Garrigan D. Toward an evolutionary genomics of the avian Mhc. Immunol Rev. 1999;167:119–132. doi: 10.1111/j.1600-065X.1999.tb01386.x. PubMed DOI

Gasper JS, Shiina T, Inoko H, Edwards SV. Songbird genomics: analysis of 45 kb upstream of a polymorphic Mhc class II gene in red-winged blackbirds (Agelaius phoeniceus) Genomics. 2001;75:26–34. doi: 10.1006/geno.2001.6596. PubMed DOI

Eimes JA, Bollmer JL, Whittingham LA, Johnson JA, Van Oosterhout C, Dunn PO. Rapid loss of MHC class II variation in a bottlenecked population is explained by drift and loss of copy number variation. J Evol Biol. 2011;24:1847–1856. doi: 10.1111/j.1420-9101.2011.02311.x. PubMed DOI

Bollmer JL, Dunn PO, Whittingham LA, Wimpee C. Extensive MHC Class II B gene duplication in a passerine, the common yellowthroat (Geothlypis trichas) J Hered. 2010;101(4):448–460. doi: 10.1093/jhered/esq018. PubMed DOI

Alcaide M, Edwards SV, Negro JJ. Characterization, polymorphism, and evolution of MHC class IIB genes in birds of prey. J Mol Evol. 2007;65:541–554. doi: 10.1007/s00239-007-9033-9. PubMed DOI

Klein J. Natural history of the major histocompatibility complex. New York: Wiley; 1986.

Jarvis ED, Mirarab S, Aberer AJ, Li B, Houde P, Li C, Ho SYW, Faircloth BC, Nabholz B, Howard JT, et al. Whole-genome analyses resolve early branches in the tree of life of modern birds. Science. 2014;346(6215):1320–1331. doi: 10.1126/science.1253451. PubMed DOI PMC

Taniguchi Y, Matsumoto K, Matsuda H, Yamada T, Sugiyama T, Homma K, Kaneko Y, Yamagishi S, Iwaisaki H. Structure and polymorphism of the major histocompatibility complex class II region in the Japanese Crested Ibis, Nipponia nippon. PLoS One. 2014;9(9) doi: 10.1371/journal.pone.0108506. PubMed DOI PMC

Chen L-C, Lan H, Sun L, Deng Y-L, Tang K-Y, Wan Q-H. Genomic organization of the crested ibis MHC provides new insight into ancestral avian MHC structure. Sci Rep. 2015;5:7963. doi: 10.1038/srep07963. PubMed DOI PMC

Dearborn DC, Gager AB, Gilmour ME, McArthur AG, Hinerfeld DA, Mauck RA. Non-neutral evolution and reciprocal monophyly of two expressed Mhc class II B genes in Leach’s storm-petrel. Immunogenetics. 2015;67(2):111–123. doi: 10.1007/s00251-014-0813-2. PubMed DOI

Eimes JA, Lee S-i, Townsend AK, Jablonski P, Nishiumi I, Satta Y. Early duplication of a single MHC IIB locus prior to the passerine radiations. PLoS One. 2016;11(9) doi: 10.1371/journal.pone.0163456. PubMed DOI PMC

Burri R, Promerová M, Goebel J, Fumagalli L. PCR-based isolation of multigene families: lessons from the avian MHC class IIB. Mol Ecol Resour. 2014;14(4):778–788. doi: 10.1111/1755-0998.12234. PubMed DOI

Zamani N, Russell P, Lantz H, Hoeppner M, Meadows J, Vijay N, Mauceli E, di Palma F, Lindblad-Toh K, Jern P, et al. Unsupervised genome-wide recognition of local relationship patterns. BMC Genomics. 2013;14(1):347. doi: 10.1186/1471-2164-14-347. PubMed DOI PMC

Ohno S. Evolution by gene duplication. New York: Springer; 1970.

Chen J-M, Cooper DN, Chuzhanova N, Ferec C, Patrinos GP. Gene conversion: mechanisms, evolution and human disease. Nat Rev Genet. 2007;8(10):762–775. doi: 10.1038/nrg2193. PubMed DOI

Kaufman J, Jansen J, Shaw I, Walker B, Milne S, Beck S, Salomonsen J. Gene organisation determines evolution of function in the chicken MHC. Immunol Rev. 1999;167:101–117. doi: 10.1111/j.1600-065X.1999.tb01385.x. PubMed DOI

Balakrishnan C, Ekblom R, Volker M, Westerdahl H, Godinez R, Kotkiewicz H, Burt D, Graves T, Griffin D, Warren W, et al. Gene duplication and fragmentation in the zebra finch major histocompatibility complex. BMC Biol. 2010;8(1):29. doi: 10.1186/1741-7007-8-29. PubMed DOI PMC

Kelley J, Walter L, Trowsdale J. Comparative genomics of major histocompatibility complexes. Immunogenetics. 2005;56(10):683–695. doi: 10.1007/s00251-004-0717-7. PubMed DOI

Gaigher A, Burri R, Gharib W, Taberlet P, Roulin A, Fumagalli L. Family-assisted inference of the genetic architecture of MHC variation. Mol Ecol Resour. 2016; PubMed

Shiina T, Hosomichi K, Hanzawa K. Comparative genomics of the poultry major histocompatibility complex. Anim Sci J. 2006;77(2):151–162. doi: 10.1111/j.1740-0929.2006.00333.x. DOI

Chaves LD, Krueth SB, Reed KM. Defining the Turkey MHC: sequence and genes of the B locus. J Immunol. 2009;183:6530–6537. doi: 10.4049/jimmunol.0901310. PubMed DOI

Ye Q, He K, Wu S-Y, Wan Q-H. Isolation of a 97-kb minimal essential MHC B locus from a new reverse-4D BAC Library of the Golden Pheasant. PLoS One. 2012;7(3) doi: 10.1371/journal.pone.0032154. PubMed DOI PMC

Salomonsen J, Marston D, Avila D, Bumstead N, Johansson B, Juul-Madsen H, Olesen GD, Riegert P, Skjødt K, Vainio O, et al. The properties of the single chicken MHC classical class II a chain (B-LA) gene indicate an ancient origin for the DR/E-like isotype of class II molecules. Immunogenetics. 2003;55(9):605–614. doi: 10.1007/s00251-003-0620-7. PubMed DOI

Bontrop RE. Comparative genetics of MHC polymorphisms in different primate species: duplications and deletions. Hum Immunol. 2006;67(6):388–397. doi: 10.1016/j.humimm.2006.03.007. PubMed DOI

Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30(4):772–780. doi: 10.1093/molbev/mst010. PubMed DOI PMC

Darriba D, Taboada GL, Doallo R, Posada D. jModelTest 2: more models, new heuristics and parallel computing. Nat Methods. 2012;9(8):772. doi: 10.1038/nmeth.2109. PubMed DOI PMC

Akaike H. A new look at the statistical model identification. IEEE Trans Autom Control. 1974;19(6):716–723. doi: 10.1109/TAC.1974.1100705. DOI

Posada D, Buckley T. Model selection and model averaging in phylogenetics: advantages of akaike information criterion and Bayesian approaches over likelihood ratio tests. Syst Biol. 2004;53(5):793–808. doi: 10.1080/10635150490522304. PubMed DOI

Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012;61(3):539–542. doi: 10.1093/sysbio/sys029. PubMed DOI PMC

Rambaut A, Drummond AJ. Tracer v1.4, Available from http://beast.bio.ed.ac.uk/Tracer. 2007.

Huson DH, Bryant D. Application of phylogenetic networks in evolutionary studies. Mol Biol Evol. 2006;23(2):254–267. doi: 10.1093/molbev/msj030. PubMed DOI

Kohany O, Gentles AJ, Hankus L, Jurka J. Annotation, submission and screening of repetitive elements in Repbase: RepbaseSubmitter and Censor. BMC Bioinformatics. 2006;7:474. doi: 10.1186/1471-2105-7-474. PubMed DOI PMC

Paradis E, Claude J, Strimmer K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics. 2004;20:289–290. doi: 10.1093/bioinformatics/btg412. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...