Epigenetic and antitumor effects of platinum(IV)-octanoato conjugates
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28623355
PubMed Central
PMC5473904
DOI
10.1038/s41598-017-03864-w
PII: 10.1038/s41598-017-03864-w
Knihovny.cz E-zdroje
- MeSH
- cisplatina * analogy a deriváty farmakokinetika farmakologie MeSH
- DNA nádorová metabolismus MeSH
- epigeneze genetická účinky léků MeSH
- lidé MeSH
- metylace DNA účinky léků MeSH
- nádorové buněčné linie MeSH
- nádory vaječníků * farmakoterapie metabolismus patologie MeSH
- protinádorové látky * farmakokinetika farmakologie MeSH
- regulace genové exprese u nádorů účinky léků MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cisplatina * MeSH
- DNA nádorová MeSH
- protinádorové látky * MeSH
We present the anticancer properties of cis, cis, trans-[Pt(IV)(NH3)2Cl2(OA)2] [Pt(IV)diOA] (OA = octanoato), Pt(IV) derivative of cisplatin containing two OA units appended to the axial positions of a six-coordinate Pt(IV) center. Our results demonstrate that Pt(IV)diOA is a potent cytotoxic agent against many cancer cell lines (the IC50 values are approximately two orders of magnitude lower than those of clinically used cisplatin or Pt(IV) derivatives with biologically inactive axial ligands). Importantly, Pt(IV)diOA overcomes resistance to cisplatin, is significantly more potent than its branched Pt(IV) valproato isomer and exhibits promising in vivo antitumor activity. The potency of Pt(IV)diOA is a consequence of several factors including enhanced cellular accumulation correlating with enhanced DNA platination and cytotoxicity. Pt(IV)diOA induces DNA hypermethylation and reduces mitochondrial membrane potential in cancer cells at levels markedly lower than the IC50 value of free OA suggesting the synergistic action of platinum and OA moieties. Collectively, the remarkable antitumor effects of Pt(IV)diOA are a consequence of the enhanced cellular uptake which makes it possible to simultaneously accumulate high levels of both cisplatin and OA in cells. The simultaneous dual action of cisplatin and OA by different mechanisms in tumor cells may result in a markedly enhanced and unique antitumor effects of Pt(IV) prodrugs.
Dipartimento di Scienze del Farmaco Universita di Padova Via Marzolo 5 35131 Padova Italy
Institute for Drug Research School of Pharmacy The Hebrew University Jerusalem 91120 Israel
Zobrazit více v PubMed
Hall MD, Hambley TW. Platinum(IV) antitumour compounds: their bioinorganic chemistry. Coord. Chem. Rev. 2002;232:49–67. doi: 10.1016/S0010-8545(02)00026-7. DOI
Hall MD, Mellor HR, Callaghan R, Hambley TW. Basis for design and development of platinum(IV) anticancer complexes. J. Med. Chem. 2007;50:3403–3411. doi: 10.1021/jm070280u. PubMed DOI
Nemirovski A, Kasherman Y, Tzaraf Y, Gibson D. Reduction of cis, trans, cis-PtCl2(OCOCH3)2(NH3)2 by aqueous extracts of cancer cells. J. Med. Chem. 2007;50:5554–5556. doi: 10.1021/jm070740j. PubMed DOI
Zhang JZ, et al. Getting to the core of platinum drug bio-distributions: the penetration of anti-cancer platinum complexes into spheroid tumour models. Metallomics. 2012;4:1209–1217. doi: 10.1039/c2mt20168b. PubMed DOI
Ravera M, et al. Cellular trafficking, accumulation and DNA platination of a series of cisplatin-based dicarboxylato Pt(IV) prodrugs. J. Inorg. Biochem. 2015;150:1–8. doi: 10.1016/j.jinorgbio.2015.05.012. PubMed DOI
Johnstone TC, Suntharalingam K, Lippard SJ. The next generation of platinum drugs: Targeted Pt(II) agents, nanoparticle delivery, and Pt(IV) prodrugs. Chem. Rev. 2016;116:3436–3486. doi: 10.1021/acs.chemrev.5b00597. PubMed DOI PMC
Gibson D. Platinum(IV) anticancer prodrugs - hypotheses and facts. Dalton Trans. 2016;45:12983–12991. doi: 10.1039/C6DT01414C. PubMed DOI
Gabano E, Ravera M, Osella D. Pros and cons of bifunctional platinum(IV) antitumor prodrugs: two are (not always) better than one. Dalton Trans. 2014;43:9813–9820. doi: 10.1039/c4dt00911h. PubMed DOI
Yang J, et al. Conjugate of Pt(IV)-histone deacetylase inhibitor as a prodrug for cancer chemotherapy. Mol. Pharmaceutics. 2012;9:2793–2800. doi: 10.1021/mp200597r. PubMed DOI
Alessio M, et al. Antiproliferative activity of Pt(IV)-bis(carboxylato) conjugates on malignant pleural mesothelioma cells. J. Inorg. Biochem. 2013;129:52–57. doi: 10.1016/j.jinorgbio.2013.09.003. PubMed DOI
Novohradsky V, et al. New insights into the molecular and epigenetic effects of antitumor Pt(IV)-valproic acid conjugates in human ovarian cancer cells. Biochem. Pharmacol. 2015;95:133–144. doi: 10.1016/j.bcp.2015.04.003. PubMed DOI
Novohradsky V, et al. Antitumor platinum(IV) derivatives of oxaliplatin with axial valproato ligands. J. Inorg. Biochem. 2014;140:72–79. doi: 10.1016/j.jinorgbio.2014.07.004. PubMed DOI
Ratzon E, et al. Platinum (IV)-fatty acid conjugates overcome inherently and acquired Cisplatin resistant cancer cell lines: an in-vitro study. BMC Cancer. 2016;16:140. doi: 10.1186/s12885-016-2182-8. PubMed DOI PMC
Lemarie F, Beauchamp E, Legrand P, Rioux V. Revisiting the metabolism and physiological functions of caprylic acid (C8:0) with special focus on ghrelin octanoylation. Biochimie. 2016;120:40–48. doi: 10.1016/j.biochi.2015.08.002. PubMed DOI
Chang PS, et al. Seizure control by derivatives of medium chain fatty acids associated with the ketogenic diet show novel branching-point structure for enhanced potency. J. Pharmacol. Exp. Ther. 2015;352:43–52. doi: 10.1124/jpet.114.218768. PubMed DOI
Theiner S, et al. Comparative in vitro and in vivo pharmacological investigation of platinum(IV) complexes as novel anticancer drug candidates for oral application. J. Biol. Inorg. Chem. 2015;20:89–99. doi: 10.1007/s00775-014-1214-6. PubMed DOI PMC
Julsing, J. R. & Peters, G. J. Methylation of DNA repair genes and the efficacy of DNA targeted anticancer treatment. Oncol. Discov. 2, doi:10.7243/2052-6199-2-3 (2014).
Szyf M. DNA methylation and demethylation as targets for anticancer therapy. Biochemistry (Moscow) 2005;70:651–669. doi: 10.1007/s10541-005-0147-7. PubMed DOI
Yang X, Lay F, Han H, Jones PA. Targeting DNA methylation for epigenetic therapy. Trends Pharmacol. Sci. 2010;31:536–546. doi: 10.1016/j.tips.2010.08.001. PubMed DOI PMC
Paz MF, et al. A systematic profile of DNA methylation in human cancer cell lines. Cancer Res. 2003;63:1114–1121. PubMed
Wong JJL, Hawkins NJ, Ward RL. Colorectal cancer: a model for epigenetic tumorigenesis. Gut. 2007;56:140–148. doi: 10.1136/gut.2005.088799. PubMed DOI PMC
Lyko F, Brown R. DNA methyltransferase inhibitors and the development of epigenetic cancer therapies. J. Natl. Cancer Inst. 2005;97:1498–1506. doi: 10.1093/jnci/dji311. PubMed DOI
Cho YM, et al. Colon cancer cell apoptosis is induced by combined exposure to the n-3 fatty acid docosahexaenoic acid and butyrate through promoter methylation. Exp. Biol. Med. 2014;239:302–310. doi: 10.1177/1535370213514927. PubMed DOI PMC
Hagemann, S., Heil, O., Lyko, F. & Brueckner, B. Azacytidine and decitabine induce gene-specific and non-random DNA demethylation in human cancer cell lines. PLoS ONE6, e17388 (2011). PubMed PMC
Nyce J, Drug-induced DNA. hypermethylation and drug-resistance in human-tumors. Cancer Res. 1989;49:5829–5836. PubMed
Dhar S, Lippard SJ. Mitaplatin, a potent fusion of cisplatin and the orphan drug dichloroacetate. Proc. Natl. Acad. Sci. USA. 2009;106:22199–22204. doi: 10.1073/pnas.0912276106. PubMed DOI PMC
Xue X, et al. Mitaplatin increases sensitivity of tumor cells to cisplatin by inducing mitochondrial dysfunction. Mol. Pharmaceutics. 2012;9:634–644. doi: 10.1021/mp200571k. PubMed DOI PMC
Jelínková I, et al. Platinum(IV) complex LA-12 exerts higher ability than cisplatin to enhance TRAIL-induced cancer cell apoptosis via stimulation of mitochondrial pathway. Biochem. Pharmacol. 2014;92:415–424. doi: 10.1016/j.bcp.2014.09.013. PubMed DOI
Kingsley-Hickman PB, Sako EY, Uğurbil K, From AH, Foker JE. 31P NMR measurement of mitochondrial uncoupling in isolated rat hearts. J. Biol. Chem. 1990;265:1545–1550. PubMed
Hirabara SM, et al. Acute effect of fatty acids on metabolism and mitochondrial coupling in skeletal muscle. Biochim. Biophys. Acta. 2006;1757:57–66. doi: 10.1016/j.bbabio.2005.11.007. PubMed DOI
Kamata Y, Shiraga H, Tai A, Kawamoto Y, Gohda E. Induction of neurite outgrowth in PC12 cells by the medium-chain fatty acid octanoic acid. Neuroscience. 2007;146:1073–1081. doi: 10.1016/j.neuroscience.2007.03.001. PubMed DOI
Thevenet J, et al. Medium-chain fatty acids inhibit mitochondrial metabolism in astrocytes promoting astrocyte-neuron lactate and ketone body shuttle systems. FASEB J. 2016;30:1913–1926. doi: 10.1096/fj.201500182. PubMed DOI
Sakai Y, Sasahira T, Ohmori H, Yoshida K, Kuniyasu H. Conjugated linoleic acid reduced metastasized LL2 tumors in mouse peritoneum. Virchows Archiv. 2006;449:341–347. doi: 10.1007/s00428-006-0249-7. PubMed DOI
Jung J. Human tumor xenograft models for preclinical assessment of anticancer drug development. Toxicol. Res. 2014;30:1–5. doi: 10.5487/TR.2014.30.1.001. PubMed DOI PMC
Hall MD, et al. The fate of platinum(II) and platinum(IV) anti-cancer agents in cancer cells and tumours. J. Struct. Biol. 2006;155:38–44. doi: 10.1016/j.jsb.2006.01.011. PubMed DOI
Zanellato I, et al. Biological activity of a series of cisplatin-based aliphatic bis(carboxylato) Pt(IV) prodrugs: How long the organic chain should be? J. Inorg. Biochem. 2014;140:219–227. doi: 10.1016/j.jinorgbio.2014.07.018. PubMed DOI
Zheng YR, et al. Pt(IV) prodrugs designed to bind non-covalently to human serum albumin for drug delivery. J. Am. Chem. Soc. 2014;136:8790–8798. doi: 10.1021/ja5038269. PubMed DOI PMC
Porter CJH, Trevaskis NL, Charman WN. Lipids and lipid-based formulations: optimizing the oral delivery of lipophilic drugs. Nature Rev. Drug Discov. 2007;6:231–248. doi: 10.1038/nrd2197. PubMed DOI
Sgoutas D, Macmahon W, Love A, Jerkunica I. Interaction of cyclosporine-A with human lipoproteins. J. Pharm. Pharmacol. 1986;38:583–588. doi: 10.1111/j.2042-7158.1986.tb03085.x. PubMed DOI
Prueksaritanont T, Koike M, Hoener BA, Benet LZ. Transport and metabolism of cyclosporine in isolated rat he[atocytes - The effects of lipids. Biochem. Pharmacol. 1992;43:1997–2006. doi: 10.1016/0006-2952(92)90643-W. PubMed DOI
Patel JP, Brocks DR. The effect of oral lipids and circulating lipoproteins on the metabolism of drugs. Exp. Opin. Drug Metabol. Toxicol. 2009;5:1385–1398. doi: 10.1517/17425250903176439. PubMed DOI
Brabec V. DNA modifications by antitumor platinum and ruthenium compounds: their recognition and repair. Prog. Nucleic Acid Res. Mol. Biol. 2002;71:1–68. doi: 10.1016/S0079-6603(02)71040-4. PubMed DOI
Kelland L. The resurgence of platinum-based cancer chemotherapy. Nature Rev. Cancer. 2007;7:573–584. doi: 10.1038/nrc2167. PubMed DOI
Jung Y, Lippard SJ. Direct cellular responses to platinum-induced DNA damage. Chem. Rev. 2007;107:1387–1407. doi: 10.1021/cr068207j. PubMed DOI
Szyf M. The role of DNA hypermethylation and demethylation in cancer and cancer therapy. Curr. Oncol. 2008;15:72–75. doi: 10.3747/co.v15i2.210. PubMed DOI PMC
Ehrlich M. DNA methylation in cancer: too much, but also too little. Oncogene. 2002;21:5400–5413. doi: 10.1038/sj.onc.1205651. PubMed DOI
Ehrlich M. DNA hypomethylation in cancer cells. Epigenomics. 2009;1:239–259. doi: 10.2217/epi.09.33. PubMed DOI PMC
Juttermann R, Li E, Jaenisch R. Toxicity of 5-aza-2′-deoxycytidine to mammalian-cells is mediated primarily by covalent trapping of DNA methyltransferase rather than DNA demethylation. Proc. Natl. Acad. Sci. USA. 1994;91:11797–11801. doi: 10.1073/pnas.91.25.11797. PubMed DOI PMC
Gros C, et al. DNA methylation inhibitors in cancer: Recent and future approaches. Biochimie. 2012;94:2280–2296. doi: 10.1016/j.biochi.2012.07.025. PubMed DOI
Jihong Z, Malcolm FGS, Tracey DB. Temozolomide: Mechanisms of action, repair and resistance. Curr. Mol. Pharmacol. 2012;5:102–114. doi: 10.2174/1874467211205010102. PubMed DOI
Topkaya SN, Serindere G, Ozder M. Determination of DNA hypermethylation using anticancer drug - temozolomide. Electroanalysis. 2016;28:1052–1059. doi: 10.1002/elan.201501027. DOI
Detich N, Hamm S, Just G, Knox JD, Szyf M. The methyl donor S-adenosylmethionine inhibits active demethylation of DNA - A candidate novel mechanism for the pharmacological effects of S-adenosylmethionine. J. Biol. Chem. 2003;278:20812–20820. doi: 10.1074/jbc.M211813200. PubMed DOI
Pakneshan P, Szyf M, Farias-Eisner R, Rabbani SA. Reversal of the hypomethylation status of urokinase (uPA) promoter blocks breast cancer growth and metastasis. J. Biol. Chem. 2004;279:31735–31744. doi: 10.1074/jbc.M401669200. PubMed DOI
Wilson JJ, Lippard SJ. Synthetic methods for the preparation of platinum anticancer complexes. Chem. Rev. 2014;114:4470–4495. doi: 10.1021/cr4004314. PubMed DOI PMC