Phylogenetic and paleobotanical evidence for late Miocene diversification of the Tertiary subtropical lineage of ivies (Hedera L., Araliaceae)
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
28641575
PubMed Central
PMC5480257
DOI
10.1186/s12862-017-0984-1
PII: 10.1186/s12862-017-0984-1
Knihovny.cz E-zdroje
- Klíčová slova
- Centrifugal dispersal, Climate-driven spatial speciation, Eastern and western Mediterranean, Tertiary refuge,
- MeSH
- biologická evoluce MeSH
- břečťan klasifikace genetika MeSH
- ekosystém MeSH
- fylogeneze MeSH
- fylogeografie MeSH
- polyploidie MeSH
- vznik druhů (genetika) MeSH
- zkameněliny MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Asie MeSH
- Evropa MeSH
BACKGROUND: Hedera (ivies) is one of the few temperate genera of the primarily tropical Asian Palmate group of the Araliaceae, which extends its range out of Asia to Europe and the Mediterranean basin. Phylogenetic and phylogeographic results suggested Asia as the center of origin and the western Mediterranean region as one of the secondary centers of diversification. The bird-dispersed fleshy fruits of ivies suggest frequent dispersal over long distances (e.g. Macaronesian archipelagos), although reducing the impact of geographic barriers to gene flow in mainland species. Genetic isolation associated with geographic barriers and independent polyploidization events have been postulated as the main driving forces of diversification. In this study we aim to evaluate past and present diversification patterns in Hedera within a geographic and temporal framework to clarify the biogeographic history of the genus. RESULTS: Phylogenetic (biogeographic, time divergence and diversification) and phylogeographic (coalescence) analyses using four DNA regions (nrITS, trnH-psbA, trnT-trnL, rpl32) revealed a complex spatial pattern of lineage divergence. Scarce geographic limitation to gene flow and limited diversification are observed during the early-mid Miocene, followed by a diversification rate increase related to geographic divergence from the Tortonian/Messinian. Genetic and palaeobotanical evidence points the origin of the Hedera clade in Asia, followed by a gradual E-W Asian extinction and the progressive E-W Mediterranean colonization. The temporal framework for the E Asia - W Mediterranean westward colonization herein reported is congruent with the fossil record. Subsequent range expansion in Europe and back colonization to Asia is also inferred. Uneven diversification among geographic areas occurred from the Tortonian/Messinian onwards with limited diversification in the newly colonized European and Asian regions. Eastern and western Mediterranean regions acted as refugia for Miocene and post-Miocene lineages, with a similar role as consecutive centers of centrifugal dispersal (including islands) and speciation. CONCLUSIONS: The Miocene Asian extinction and European survival of Hedera question the general pattern of Tertiary regional extinction of temperate angiosperms in Europe while they survived in Asia. The Tortonian/Messinian diversification increase of ivies in the Mediterranean challenges the idea that this aridity period was responsible for the extinction of the Mediterranean subtropical Tertiary flora. Differential responses of Hedera to geographic barriers throughout its evolutionary history, linked to spatial isolation related to historical geologic and climatic constraints may have shaped diversification of ivies in concert with recurrent polyploidy.
Department of Biodiversity and Conservation Real Jardín Botánico CSIC Madrid Spain
Department of Biology Universidad Autónoma de Madrid Madrid Spain
Department of Botany Faculty of Science University of South Bohemia Ceske Budejovice Czech Republic
Department of Botany MRC 166 Smithsonian Institution Washington DC USA
Zobrazit více v PubMed
Meusel H, Jäger E, Weinert E. Vergleichende Chorologie Der Zentraleuropäischen Flora. Jena: Veb Gustav Fischer Verlag; 1965.
Mabberley DJ. The plant-book. Cambridge: Cambridge University Press; 1997.
Valcárcel V: Taxonomy, systematics and evolution of Hedera L. (Araliaceae). Universidad Pablo de Olavide; 2008.
Green AF, Ramsey TS, Ramsey J. Phylogeny and biogeography of ivies (Hedera spp., Araliaceae), a polyploid complex of woody vines. Syst Bot. 2011;36:1114–1127. doi: 10.1600/036364411X605100. DOI
Rutherford A, McAllister HA, Mill RR. New ivies from the Mediterranean area and Macaronesia. The Plantsman. 1993;15:115–128.
Vargas P, Mcallister HA, Morton C, Jury SL, Wilkinson MJ. Polyploid speciation in Hedera (Araliaceae): phylogenetic and biogeographic insights based on chromosome counts and ITS sequences. Plant Syst Evol. 1999;219:165–179. doi: 10.1007/BF00985577. DOI
McAllister HA, Rutherford A. Hedera helix L. and H. hibernica (Kirchner) bean (Araliaceae) in the British isles. Watsonia. 1990;18:7–15.
Rutherford A. The history of the Canary Islands ivy and its relatives. Ivy J. 1984;10:13–18.
Rutherford A. The ivies of Andalusia (southern Spain) Ivy J. 1989;15:7–17.
McAllister HA. Canary and Algerian ivies. The Plantsman. 1988;10:27–29.
Ackerfield J, Wen J. Evolution of Hedera (the ivy genus, Araliaceae): insights from chloroplast DNA data. Int J Plant Sci. 2003;164:593–602. doi: 10.1086/375423. DOI
Ackerfield J. Trichome morphology in Hedera (Araliaceae) Edinb J Bot. 2001;58:259–267. doi: 10.1017/S0960428601000622. DOI
Ackerfield J, Wen J. A morphometric analysis of Hedera L. (the ivy genus, Araliaceae) Adansonia Sér. 2002;324:197–212.
Grivet D, Petit RJ. Phylogeography of the common ivy (Hedera sp.) in Europe: genetic differentiation through space and time. Mol Ecol. 2002;11:1351–1362. doi: 10.1046/j.1365-294X.2002.01522.x. PubMed DOI
Valcárcel V, Fiz O, Vargas P. Chloroplast and nuclear evidence for multiple origins of polyploids and diploids of Hedera (Araliaceae) in the Mediterranean basin. Mol Phylogenet Evol. 2003;27:1–20. doi: 10.1016/S1055-7903(02)00364-0. PubMed DOI
Valcárcel V, Vargas P. Phylogenetic reconstruction of key traits in the evolution of ivies (Hedera L.) Plant Syst Evol. 2013;229:447–458. doi: 10.1007/s00606-012-0734-1. DOI
Ridley HN. The dispersal of plants throughout the world. L. Reeve & Co: Kent; 1930.
Guitián J. Dispersal of ivy Hedera helix seeds by birds: time spent in the plant and seed removal efficiency. Ardeola. 1987;34:25–35.
Kollmann J, Grubb PJ. Recruitment of fleshy-fruited species under different shrub species: control by under-canopy environment. Ecol Res. 1999;14:9–21. doi: 10.1046/j.1440-1703.1999.141281.x. DOI
Sack L, Grubb PJ, Maranon T. The functional morphology of juvenile plants tolerant of strong summer drought in shaded forest understories in southern Spain. Plant Ecol. 2003;168:139–163. doi: 10.1023/A:1024423820136. DOI
Valcárcel V, Rutherford A, Miller R, McAllister HA. Hedera L. in Flora iberica. Vol. X. Araliaceae-Umbelliferae. Edited by Nieto Feliner G. Madrid: Departamento de publicaciones del CSIC; 2003.
McAllister HA. New work on ivies. Int Dendrol Soc Yearb. 1981;1981:106–109.
Rodríguez-Sánchez F, Hampe A, Jordano P, Arroyo J: Past tree range dynamics in the Iberian Peninsula inferred through phylogeography and palaeodistribution modelling: A review. Rev Palaeobot Palynol 2010, 162:507–521. [Iberian Floras through Time: Land of Diversity and Survival].
Bramwell D, Bramwell Z. Flores Silvestres de Las Islas Canarias. Editorial Rueda: Madrid, Spain; 1990.
Valcárcel V, Fiz O, Wen J. The origin of the early differentiation of ivies (Hedera L.) and the radiation of the Asian Palmate group (Araliaceae) Mol Phylogenet Evol. 2014;70:492–503. doi: 10.1016/j.ympev.2013.10.016. PubMed DOI
Mitchell A, Li R, Brown JW, Schönberger I, Wen J. Ancient divergence and biogeography of Raukaua (Araliaceae) and close relatives in the southern hemisphere. Aust Syst Bot. 2012;25:432–446. doi: 10.1071/SB12020. DOI
Ronquist F. Dispersal-vicariance analysis: a new approach to the quantification of historical biogeography. Syst Biol. 1997;45:195–203. doi: 10.1093/sysbio/46.1.195. DOI
Marks MD. Molecular genetic analysis of trichome development in Arabidopsis. Annu Rev Plant Physiol Plant Mol Biol. 1997;48:137–163. doi: 10.1146/annurev.arplant.48.1.137. PubMed DOI
Ishida T, Kurata T, Okada K. Wada: a genetic regulatory network in the development of trichomes and root hairs. Annu Rev Plant Biol. 2008;59:365–386. doi: 10.1146/annurev.arplant.59.032607.092949. PubMed DOI
Médail F, Diadema K. Glacial refugia influence plant diversity patterns in the Mediterranean Basin. J Biogeogr. 2009;36:1333–1345. doi: 10.1111/j.1365-2699.2008.02051.x. DOI
López-Pujol J, Zhang F-M, Sun H-Q, Ying T-S, Ge S. Centres of plant endemism in China: places for survival or for speciation? J Biogeogr. 2011;38:1267–1280. doi: 10.1111/j.1365-2699.2011.02504.x. DOI
Taberlet P, Gielly L, Pautou G, Bouvet J. Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol Biol. 1991;17:1105–1109. doi: 10.1007/BF00037152. PubMed DOI
Shaw J, Lickey EB, Schilling EE, Small RL. Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. Am J Bot. 2007;94:275–288. doi: 10.3732/ajb.94.3.275. PubMed DOI
Sang T, Crawford D, Stuessy T. Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae) Am J Bot. 1997;84:1120. doi: 10.2307/2446155. PubMed DOI
Li R, Ma P-F, Wen J, Yi T-S. Complete sequencing of five Araliaceae chloroplast genomes and the phylogenetic implications. PLoS One. 2013;8 doi: 10.1371/journal.pone.0078568. PubMed DOI PMC
Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–1979. doi: 10.1093/nar/gkh340. PubMed DOI PMC
Vaidya G, Lohman DJ, Meier R. SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics. 2010;27:171–180. doi: 10.1111/j.1096-0031.2010.00329.x. PubMed DOI
Drummond AJ, Rambaut A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol. 2007;7:214. doi: 10.1186/1471-2148-7-214. PubMed DOI PMC
Posada D. jModelTest: phylogenetic model averaging. Mol Biol Evol. 2008;25:1253–1256. doi: 10.1093/molbev/msn083. PubMed DOI
Rambaut A, Drummond AJ: Tracer v1.4. 2007.
Szafer W. Miocenska Flora ze Starych Gliwic na Slasku (Miocene Flora of stare Gliwice in upper Silesia) Pr Inst Geol. 1961;33:1–205.
Barrón E, Postigo-Mijarra JM, Diéguez C. The late Miocene macroflora of the Cerdanya Basin (eastern Pyrenees, Spain): towards a synthesis. Paleontogr Abt B Paleobotany - Paleophytology. 2014;291:85–129.
Mai DH, Walther H. Die pliozaenen Floren von Thueringen, Deutsche Demokratische Republik. Quartaerpalaeontologie. 1988;7:55–297.
Rim KH. Fossils of North Korea. Pyongyang: Science and Technology Press; 1994.
Müller J. Fossil pollen records of extant angiosperms. Bot Rev. 1981;47:1–142. doi: 10.1007/BF02860537. DOI
Kong WS. The vegetational and environmental history of the pre-Holocene period in the Korean Peninsula. Korean J Quat Res. 1992;6:12.
Kolakovskii AA, Shakryl AK. Kimmeriyskaya flora Gul’ripsha (Bagazhishta) Tr Sukum Bot Sada. 1978;24:134–156.
Kvaček Z, Velitzelos D, Velitzelos E. Late Miocene Flora of Vegora Macedonia N. Greece: University of Athens, Greece; 2002.
Kovar-Eder J, Kvaček Z, Martinetto E, Roiron P: Late Miocene to Early Pliocene vegetation of southern Europe (7–4 Ma) as reflected in the megafossil plant record. Palaeogeogr Palaeoclimatol Palaeoecol 2006, 238:321–339. [Late Miocene to Early Pliocene Environment and Climate Change in the Mediterranean Area].
Vieira M, Poças E, Pais J, Pereira D. Pliocene flora from S. Pedro da Torre deposits (Minho, NW Portugal) Geodiversitas. 2011;33:71–85. doi: 10.5252/g2011n1a5. DOI
Paradis E, Claude J, Strimmer K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics. 2004;20:289–90. PubMed
Ricklefs RE. History and diversity: explorations at the intersection of ecology and evolution. Am Nat. 2007;170:S56–S70. doi: 10.1086/519402. PubMed DOI
Crisp MD, Cook LG. Explosive radiation or cryptic mass extinction? Interpreting signatures in molecular mhylogenies. Evolution. 2009;63:2257–2265. doi: 10.1111/j.1558-5646.2009.00728.x. PubMed DOI
Fiz-Palacios O, Valcárcel V. From Messinian crisis to Mediterranean climate: a temporal gap of diversification recovered from multiple plant phylogenies. Perspect Plant Ecol Evol Syst. 2013;15:130–137. doi: 10.1016/j.ppees.2013.02.002. DOI
Rabosky DL. LASER: a maximum likelihood toolkit for detecting temporal shifts in diversification rates from molecular phylogenies. Evol Bioinforma. 2006;2:257–260. PubMed PMC
Crawley MJ. The R book. Chichester: Wiley; 2007.
R Development Core Team: R: A Language and Environment for Statistical Computing. Vienna, Austria; 2011.
Faith DP. Conservation evaluation and phylogenetic diversity. Biol Con. 1992;61:1–10. doi: 10.1016/0006-3207(92)91201-3. DOI
Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, Blomberg SP, Webb CO. Picante: R tools for integrating phylogenies and ecology. Bioinformatics. 2010;26:1463–1464. doi: 10.1093/bioinformatics/btq166. PubMed DOI
Clement M, Posada D, Crandall KA. TCS: A computer program to estimate gene genealogies. Mol Ecol. 2000;9:1657–1659. doi: 10.1046/j.1365-294x.2000.01020.x. PubMed DOI
Crandall KA, Templeton AR. Empirical tests of some predictions from coalescent theory with applications to intraspecific phylogeny reconstruction. Genetics. 1993;134:959–969. PubMed PMC
Posada D, Crandall KA. Intraspecific gene genealogies: trees grafting into networks. Trends Ecol Evol. 2001;16:37–45. doi: 10.1016/S0169-5347(00)02026-7. PubMed DOI
Li R, Wen J. Phylogeny and biogeography of Asian Schefflera (Araliaceae) based on nuclear and plastid DNA sequences data. J Syst Evol. 2014;52:431–49.
Li R, Wen J. Phylogeny and diversification of Chinese Araliaceae based on nuclear and plastid DNA sequence data. J Syst Evol. 2016;54:453–467. doi: 10.1111/jse.12196. DOI
Li R, Wen J. Phylogeny and biogeography of Dendropanax (Araliaceae), an Amphi-Pacific Disjunct genus between tropical/subtropical Asia and the Neotropics. Syst Bot. 2013;38:536–51.
Mitchell A, Wen J. Phylogeny of Brassaiopsis (Araliaceae) in Asia based on nuclear ITS and 5S–NTS DNA sequences. Syst Bot. 2005;30:872–86.
Plunkett GM, Wen J, Ii PPL. Infrafamilial classifications and characters in Araliaceae: insights from the phylogenetic analysis of nuclear (ITS) and plastid (trnL-trnF) sequence data. Plant Syst Evol. 2004;245:1–39.
Wen J, Plunkett GM, Mitchell AD, Wagstaff SJ. The evolution of Araliaceae: a phylogenetic analysis based on ITS sequences of nuclear ribosomal DNA. Syst Bot. 2001;26:144–167.
Wen J, Nie Z-L, Soejima A, Meng Y. Phylogeny of Vitaceae based on the nuclear GAI1 gene sequences. Can J Bot. 2007;85:731–45.
Axelrod D. Evolution and biogeography of Madrean–Tethyan sclerophyll vegetation. Ann Mo Bot Gard. 1975;62:280–334. doi: 10.2307/2395199. DOI
Harris AJ, Xiang QY, Thomas DT: Phylogeny, origin, and biogeographic history of Aesculus L. (Sapindales) an update from combined analysis of DNA sequences, morphology and fossils. Taxon 2009, 58:1–19.
Harris A, Wen J. Xiang Q-Y (Jenny): inferring the biogeographic origins of inter-continental disjunct endemics using a Bayes-DIVA approach. J Syst Evol. 2013;51:117–133. doi: 10.1111/jse.12007. DOI
Wen J. Evolution of eastern Asian and eastern North American disjunct pattern in flowering plants. Annu Rev Ecol Syst. 1999;30:421–455. doi: 10.1146/annurev.ecolsys.30.1.421. DOI
Latham RE, Ricklefs RE. Global patterns of tree species richness in moist forests: energy-diversity theory does not account for variation in species richness. Oikos. 1993;67:325–333. doi: 10.2307/3545479. DOI
Qian H, Ricklefs RE. Large-scale processes and the Asian bias in temperate plant species diversity. Nature. 2000;407:180–182. doi: 10.1038/35025052. PubMed DOI
Krijgsman W. The onset of the Messinian salinity crisis in the eastern Mediterranean (Pissouri Basin, Cyprus) Earth Planet Sci Lett. 2002;194:299–310. doi: 10.1016/S0012-821X(01)00574-X. DOI
Ivanov D, Ashraf AR, Mosbrugger V, Palamarev E. Palynological evidence for Miocene climate change in the Forecarpathian Basin (central Paratethys, NW Bulgaria) Palaeogeogr Palaeoclimatol Palaeoecol. 2002;178:19–37. doi: 10.1016/S0031-0182(01)00365-0. DOI
Van Dam JA. Geographic and temporal patterns in the late Neogene (12.3 ma) aridification of Europe: the use of small mammals as paleoprecipitation proxies. Palaeogeogr Palaeoclimatol Palaeoecol. 2006;238:190–218. doi: 10.1016/j.palaeo.2006.03.025. DOI
Thompson JD. Plant evolution in the Mediterranean. Oxford: Oxford University Press; 2005.
Rodríguez-Sánchez F, Pérez-Barrales R, Ojeda F, Vargas P, Arroyo J: The Strait of Gibraltar as a melting pot for plant biodiversity. Quat Sci Rev 2008, 27:2100–2117. [The Coastal Shelf of the Mediterranean and Beyond: Corridor and Refugium for Human Populations in the Pleistocene].
Jiménez-Moreno G, Fauquette S, Suc JP. Miocene to Pliocene vegetation reconstruction and climate estimates in the Iberian Peninsula from pollen data. Rev Paleobot Palynol. 2010;162:410–415. doi: 10.1016/j.revpalbo.2009.08.001. DOI
Herrera C. Historical effects and sorting processes as explanations for contemporary ecological patterns: character syndromes in Mediterranean woody plants. Am Nat. 1992;140:421–446. doi: 10.1086/285420. DOI
Verdú M, Dávila P, García-Fayos P, Flores-Hernández N, Valiente-Banuet A. “convergent” traits of Mediterranean woody plants belong to pre-Mediterranean lineages. Biol J Linn Soc. 2003;78:415–427. doi: 10.1046/j.1095-8312.2003.00160.x. DOI
Qiu YX, Fu CX, Comes HP. Plant molecular phylogeography in China and adjacent regions: tracing the genetic imprints of quaternary climate and environmental change in the world’s most diverse temperate flora. Mol Phylogenet Evol. 2011;59:225–244. doi: 10.1016/j.ympev.2011.01.012. PubMed DOI
Qian H. A comparison of the taxonomic richness of temperate plants in East Asia and North America. Am J Bot. 2002;89:1818–1825. doi: 10.3732/ajb.89.11.1818. PubMed DOI
Torrecilla P, López-Rodríguez JA, Catalán P. Phylogenetic relationships of Vulpia and related genera (Poeaae; Poaceae) based on analysis of ITS and trnL-F sequences. Ann Mo Bot Gard. 2004;91:124–158.
Oberprieler C. Temporal and spatial diversification of Circum-Mediterranean Compositae-anthemideae. Taxon. 2005;54:951–966. doi: 10.2307/25065480. DOI
Inda LA, Torrecilla P, Catalán P, Ruiz-Zapata T. Phylogeny of Cleome L. and ITS close relatives Podandrogyne Ducke and Polanisia Raf. (Cleomoideae, Cleomaceae) based on analysis of nuclear ITS sequences and morphology. Plant Syst Evol. 2008;274:111–126. doi: 10.1007/s00606-008-0026-y. DOI
Mansion G, Rosenbaum G, Schoenenberger N, Bacchetta G, Rosselló JA, Conti E. Phylogenetic analysis informed by geological history supports multiple, sequential invasions of the mediterranean basin by the angiosperm family Araceae. Syst Biol. 2008;57:269–285. doi: 10.1080/10635150802044029. PubMed DOI
Micó E, Sanmartín I, Galante E. Mediterranean diversification of the grass-feeding Anisopliina beetles (Scarabaeidae, Rutelinae, Anomalini) as inferred by bootstrap-averaged dispersal-vicariance analysis. J Biogeogr. 2013;36:546–560. doi: 10.1111/j.1365-2699.2008.02010.x. DOI
Ree RH, Sanmartín I. Prospects and challenges for parametric models in historical biogeographical inference. J Biogeogr. 2009;36:1211–1220. doi: 10.1111/j.1365-2699.2008.02068.x. DOI
Sanmartín I. Dispersal vs. vicariance in the Mediterranean: historical biogeography of the Palearctic Pachydeminae (Coleoptera, Scarabaeoidea) J Biogeogr. 2003;30:1883–1897. doi: 10.1046/j.0305-0270.2003.00982.x. DOI
Lo Presti RM, Oberprieler C. Evolutionary history, biogeography and eco-climatological differentiation of the genus Anthemis L. (Compositae, Anthemideae) in the circum-Mediterranean area. J Biogeogr. 2009;36:1313–32.
Costa JM, Ramos JA, da Silva LP, Timoteo S, Araújo PM, Felgueiras MS, Rosa A, Matos C, Encarnação P, Tenreiro PQ, Heleno RH. Endozoochory largely outweighs epizoochory in migrating passerines. J Avian Biol. 2014;45:59–64. doi: 10.1111/j.1600-048X.2013.00271.x. DOI
Hampe A, Arroyo J, Jordano P, Petit R. Rangewide phylogeography of a bird-dispersed Eurasian shrub: contrasting Mediterranean and temperate glacial refugia. Mol Ecol. 2003;12:3415–3426. doi: 10.1046/j.1365-294X.2003.02006.x. PubMed DOI
Dubreuil M, Riba M. González–Martínez SC, Vendramin GG, Sebastiani F, Mayol M. Genetic effects of chronic habitat fragmentation revisited: strong genetic structure in a temperate tree, Taxus baccata (Taxaceae), with great dispersal capability. Am J Bot. 2010;97:303–10. PubMed
García C, Jordano P, Arroyo JM, Godoy JA. Maternal genetic correlations in the seed rain: effects of frugivore activity in heterogeneous landscapes. J Ecol. 2009;97:1424–1435. doi: 10.1111/j.1365-2745.2009.01577.x. DOI
Krijgsman W. The Mediterranean: Mare nostrum of earth sciences. Earth Planet Sci Lett. 2002;205:1–12. doi: 10.1016/S0012-821X(02)01008-7. DOI
Ring U, Laws S, Bennet M. Structural analysis of a complex nappe sequence and late-orogenic basins from the Aegean Island of Samos, Greece. J Struct Geol. 1999;21:1575–1601. doi: 10.1016/S0191-8141(99)00108-X. DOI
Escudero M, Martín-Bravo S, Mayrose I, Fernández-Mazuecos M, Fiz-Palacios O, Hipp AL, Pimentel M, Jiménez-Mejías P, Valcárcel V, Vargas P, Luceño M. Karyotypic changes through dysploidy persist longer over evolutionary time than polyploid changes. PLoS One. 2014;9 doi: 10.1371/journal.pone.0085266. PubMed DOI PMC