Deformation pattern in vibrating microtubule: Structural mechanics study based on an atomistic approach

. 2017 Jun 26 ; 7 (1) : 4227. [epub] 20170626

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid28652626
Odkazy

PubMed 28652626
PubMed Central PMC5484714
DOI 10.1038/s41598-017-04272-w
PII: 10.1038/s41598-017-04272-w
Knihovny.cz E-zdroje

The mechanical properties of microtubules are of great importance for understanding their biological function and for applications in artificial devices. Although microtubule mechanics has been extensively studied both theoretically and experimentally, the relation to its molecular structure is understood only partially. Here, we report on the structural analysis of microtubule vibration modes calculated by an atomistic approach. Molecular dynamics was applied to refine the atomic structure of a microtubule and a C α elastic network model was analyzed for its normal modes. We mapped fluctuations and local deformations up to the level of individual aminoacid residues. The deformation is mode-shape dependent and principally different in α-tubulins and β-tubulins. Parts of the tubulin dimer sequence responding specifically to longitudinal and radial stress are identified. We show that substantial strain within a microtubule is located both in the regions of contact between adjacent dimers and in the body of tubulins. Our results provide supportive evidence for the generally accepted assumption that the mechanics of microtubules, including its anisotropy, is determined by the bonds between tubulins.

Zobrazit více v PubMed

Howard, J. et al. In Mechanics of motor proteins and the cytoskeleton (Sinauer Associates, 2001).

Odde DJ, Ma L, Briggs AH, DeMarco A, Kirschner MW. Microtubule bending and breaking in living fibroblast cells. J. Cell Sci. 1999;112:3283–3288. PubMed

Kurachi M, Hoshi M, Tashiro H. Buckling of a single microtubule by optical trapping forces: direct measurement of microtubule rigidity. Cell Motil. Cytoskeleton. 1995;30:221–228. doi: 10.1002/cm.970300306. PubMed DOI

Pampaloni F, et al. Thermal fluctuations of grafted microtubules provide evidence of a length-dependent persistence length. P. Natl. Acad. Sci. USA. 2006;103:10248–10253. doi: 10.1073/pnas.0603931103. PubMed DOI PMC

Tuszyński JA, Luchko T, Portet S, Dixon JM. Anisotropic elastic properties of microtubules. Eur. Phys. J. E. 2005;17:29–35. doi: 10.1140/epje/i2004-10102-5. PubMed DOI

Hawkins T, Mirigian M, Yasar MS, Ross JL. Mechanics of microtubules. J. Biomech. 2010;43:23–30. doi: 10.1016/j.jbiomech.2009.09.005. PubMed DOI

Felgner H, et al. Domains of neuronal microtubule-associated proteins and flexural rigidity of microtubules. J. Cell Biol. 1997;138:1067–1075. doi: 10.1083/jcb.138.5.1067. PubMed DOI PMC

Verhey KJ, Gaertig J. The tubulin code. Cell Cycle. 2007;6:2152–2160. doi: 10.4161/cc.6.17.4633. PubMed DOI

Alberts, B. et al. In Molecular Biology of the Cell 3rd edn. (Garland, 1994).

Pampaloni F, Florin E-L. Microtubule architecture: inspiration for novel carbon nanotube-based biomimetic materials. Trends Biotechnol. 2008;26:302–310. doi: 10.1016/j.tibtech.2008.03.002. PubMed DOI

Liew K, Xiang P, Zhang L. Mechanical properties and characteristics of microtubules: A review. Compos. Struct. 2015;123:98–108. doi: 10.1016/j.compstruct.2014.12.020. DOI

Deriu MA, Enemark S, Soncini M, Montevecchi FM, Redaelli A. Tubulin: from atomistic structure to supramolecular mechanical properties. J. Mater. Sci. 2007;42:8864–8872. doi: 10.1007/s10853-007-1784-6. DOI

Enemark S, Deriu MA, Soncini M, Redaelli A. Mechanical model of the tubulin dimer based on molecular dynamics simulations. J. Biomech. Eng. 2008;130:41008. doi: 10.1115/1.2913330. PubMed DOI

Kononova O, et al. Tubulin bond energies and microtubule biomechanics determined from nanoindentation in silico. J. Am. Chem. Soc. 2014;136:17036–17045. doi: 10.1021/ja506385p. PubMed DOI PMC

Molodtsov M, Grishchuk E, Efremov A, McIntosh J, Ataullakhanov F. Force production by depolymerizing microtubules: a theoretical study. P. Natl. Acad. Sci. USA. 2005;102:4353–4358. doi: 10.1073/pnas.0501142102. PubMed DOI PMC

Sept D, Baker NA, McCammon JA. The physical basis of microtubule structure and stability. Protein Sci. 2003;12:2257–2261. doi: 10.1110/ps.03187503. PubMed DOI PMC

VanBuren V, Odde DJ, Cassimeris L. Estimates of lateral and longitudinal bond energies within the microtubule lattice. P. Natl. Acad. Sci. USA. 2002;99:6035–6040. doi: 10.1073/pnas.092504999. PubMed DOI PMC

Deriu MA, et al. Anisotropic elastic network modeling of entire microtubules. Biophys. J. 2010;99:2190–2199. doi: 10.1016/j.bpj.2010.06.070. PubMed DOI PMC

Kovacs JA, Chacón P, Abagyan R. Predictions of protein flexibility: First-order measures. Proteins. 2004;56:661–668. doi: 10.1002/prot.20151. PubMed DOI

Chrétien D, Flyvbjerg H, Fuller SD. Limited flexibility of the inter-protofilament bonds in microtubules assembled from pure tubulin. Eur. Biophys. J. 1998;27:490–500. doi: 10.1007/s002490050159. PubMed DOI

Prota AE, et al. Molecular mechanism of action of microtubule-stabilizing anticancer agents. Science. 2013;339:587–590. doi: 10.1126/science.1230582. PubMed DOI

Alushin GM, et al. High-resolution microtubule structures reveal the structural transitions in α β-tubulin upon GTP hydrolysis. Cell. 2014;157:1117–1129. doi: 10.1016/j.cell.2014.03.053. PubMed DOI PMC

Bahar I, Atilgan AR, Demirel MC, Erman B. Vibrational dynamics of folded proteins: significance of slow and fast motions in relation to function and stability. Phys. Rev. Lett. 1998;80:2733. doi: 10.1103/PhysRevLett.80.2733. DOI

Gebremichael Y, Chu J-W, Voth GA. Intrinsic bending and structural rearrangement of tubulin dimer: molecular dynamics simulations and coarse-grained analysis. Biophys. J. 2008;95:2487–2499. doi: 10.1529/biophysj.108.129072. PubMed DOI PMC

Keskin O, Durell SR, Bahar I, Jernigan RL, Covell DG. Relating molecular flexibility to function: a case study of tubulin. Biophys. J. 2002;83:663–680. doi: 10.1016/S0006-3495(02)75199-0. PubMed DOI PMC

Kucera O, Havelka O, Cifra M. Vibrations of microtubules: Physics that has not met biology yet. Wave Motion. 2017;72:13–22. doi: 10.1016/j.wavemoti.2016.12.006. DOI

Sirenko YM, Stroscio MA, Kim K. Elastic vibrations of microtubules in a fluid. Phys. Rev. E. 1996;53:1003. doi: 10.1103/PhysRevE.53.1003. PubMed DOI

Shen H-S. Nonlinear vibration of microtubules in living cells. Curr. Appl. Phys. 2011;11:812–821. doi: 10.1016/j.cap.2010.11.116. DOI

Shi Y, Guo W, Ru C. Relevance of timoshenko-beam model to microtubules of low shear modulus. Physica E. 2008;41:213–219. doi: 10.1016/j.physe.2008.06.025. DOI

Civalek Ö, Demir C, Akgöz B. Free vibration and bending analyses of cantilever microtubules based on nonlocal continuum model. Math. Comput. Appl. 2010;15:289–298.

Arani AG, Shirali A, Farahani MN, Amir S, Loghman A. Nonlinear vibration analysis of protein microtubules in cytosol conveying fluid based on nonlocal elasticity theory using differential quadrature method. J. Mech. Eng. Sci. 2013;227:137–145. doi: 10.1177/0954406212445151. DOI

Zeverdejani MK, Beni YT. The nano scale vibration of protein microtubules based on modified strain gradient theory. Curr. Appl. Phys. 2013;13:1566–1576. doi: 10.1016/j.cap.2013.05.019. DOI

Arani AG, Abdollahian M, Jalaei M. Vibration of bioliquid-filled microtubules embedded in cytoplasm including surface effects using modified couple stress theory. J. Theor. Biol. 2015;367:29–38. doi: 10.1016/j.jtbi.2014.11.019. PubMed DOI

Heireche H, et al. Nonlocal elasticity effect on vibration characteristics of protein microtubules. Physica E. 2010;42:2375–2379. doi: 10.1016/j.physe.2010.05.017. DOI

Farajpour A, Rastgoo A, Mohammadi M. Surface effects on the mechanical characteristics of microtubule networks in living cells. Mech. Res. Commun. 2014;57:18–26. doi: 10.1016/j.mechrescom.2014.01.005. DOI

Jin M, Ru C. Localized vibration of a microtubule surrounded by randomly distributed cross linkers. J. Biomech. Eng. 2014;136:071002. doi: 10.1115/1.4027413. PubMed DOI

Wang C, Ru C, Mioduchowski A. Orthotropic elastic shell model for buckling of microtubules. Phys. Rev. E. 2006;74:052901. doi: 10.1103/PhysRevE.74.052901. PubMed DOI

Wang C, Ru C, Mioduchowski A. Vibration of microtubules as orthotropic elastic shells. Physica E. 2006;35:48–56. doi: 10.1016/j.physe.2006.05.008. PubMed DOI

Qian X, Zhang J, Ru C. Wave propagation in orthotropic microtubules. J. Appl. Phys. 2007;101:084702. doi: 10.1063/1.2717573. DOI

Gu B, Mai Y-W, Ru C. Mechanics of microtubules modeled as orthotropic elastic shells with transverse shearing. Acta Mech. 2009;207:195–209. doi: 10.1007/s00707-008-0121-8. DOI

Wang C, Li C, Adhikari S. Dynamic behaviors of microtubules in cytosol. J. Biomech. 2009;42:1270–1274. doi: 10.1016/j.jbiomech.2009.03.027. PubMed DOI

Daneshmand F, Ghavanloo E, Amabili M. Wave propagation in protein microtubules modeled as orthotropic elastic shells including transverse shear deformations. J. Biomech. 2011;44:1960–1966. doi: 10.1016/j.jbiomech.2011.05.003. PubMed DOI

Daneshmand F. Microtubule circumferential vibrations in cytosol. J. Eng. Med. 2012;226:589–599. doi: 10.1177/0954411912449945. PubMed DOI

Daneshmand F, Amabili M. Coupled oscillations of a protein microtubule immersed in cytoplasm: an orthotropic elastic shell modeling. J. Biol. Phys. 2012;38:429–448. doi: 10.1007/s10867-012-9263-y. PubMed DOI PMC

Taj M, Zhang J. Analysis of vibrational behaviors of microtubules embedded within elastic medium by pasternak model. Biochem. Bioph. Res. Co. 2012;424:89–93. doi: 10.1016/j.bbrc.2012.06.072. PubMed DOI

Mallakzadeh M, Zanoosi AP, Alibeigloo A. Fundamental frequency analysis of microtubules under different boundary conditions using differential quadrature method. Commun. Nonlinear Sci. 2013;18:2240–2251. doi: 10.1016/j.cnsns.2012.12.014. DOI

Daneshmand F, Farokhi H, Amabili M. A higher-order mathematical modeling for dynamic behavior of protein microtubule shell structures including shear deformation and small-scale effects. Math. Biosci. 2014;252:67–82. doi: 10.1016/j.mbs.2014.03.005. PubMed DOI

Taj M, Zhang J. Analysis of wave propagation in orthotropic microtubules embedded within elastic medium by pasternak model. J. Mech. Behav. Biomed. 2014;30:300–305. doi: 10.1016/j.jmbbm.2013.11.011. PubMed DOI

Pokorný J, Jelnek F, Trkal V, Lamprecht I, Hölzel R. Vibrations in microtubules. J. Biol. Phys. 1997;23:171–179. doi: 10.1023/A:1005092601078. PubMed DOI PMC

Portet S, Tuszyński J, Hogue C, Dixon J. Elastic vibrations in seamless microtubules. Eur. Biophys. J. 2005;34:912–920. doi: 10.1007/s00249-005-0461-4. PubMed DOI

Xiang P, Liew KM. Free vibration analysis of microtubules based on an atomistic-continuum model. J. Sound Vib. 2012;331:213–230. doi: 10.1016/j.jsv.2011.08.024. DOI

Xiang P, Liew KM. Dynamic behaviors of long and curved microtubules based on an atomistic-continuum model. Comput. Method. Appl. M. 2012;223:123–132. doi: 10.1016/j.cma.2012.02.023. DOI

Sun Y, Tian Y, Liew K. A multiscale model to predict the elastic property of microtubules. J. Comp. Theor. Nanos. 2012;9:789–793. doi: 10.1166/jctn.2012.2097. DOI

Xiang P, Zhang L, Liew K. Analysis of macromolecular microtubules using the potential-based matrix displacement method. Compos. Struct. 2015;127:224–230. doi: 10.1016/j.compstruct.2015.03.004. DOI

Rueda M, Chacón P, Orozco M. Thorough validation of protein normal mode analysis: a comparative study with essential dynamics. Structure. 2007;15:565–575. doi: 10.1016/j.str.2007.03.013. PubMed DOI

Ma J. Usefulness and limitations of normal mode analysis in modeling dynamics of biomolecular complexes. Structure. 2005;13:373–380. doi: 10.1016/j.str.2005.02.002. PubMed DOI

Bahar I, Rader A. Coarse-grained normal mode analysis in structural biology. Curr. Opin. Struc. Biol. 2005;15:586–592. doi: 10.1016/j.sbi.2005.08.007. PubMed DOI PMC

Bahar I, Lezon TR, Yang L-W, Eyal E. Global dynamics of proteins: bridging between structure and function. Ann. Rev. Biophys. 2010;39:23. doi: 10.1146/annurev.biophys.093008.131258. PubMed DOI PMC

Löwe J, Li H, Downing K, Nogales E. Refined structure of α β-tubulin at 3.5 Å resolution. J. Mol. Biol. 2001;313:1045–1057. doi: 10.1006/jmbi.2001.5077. PubMed DOI

Nogales E, Wolf SG, Downing K. Structure of the alpha beta tubulin dimer by electron crystallography. Nature. 1998;391:199–203. doi: 10.1038/34465. PubMed DOI

Ayoub AT, Craddock TJ, Klobukowski M, Tuszynski J. Analysis of the strength of interfacial hydrogen bonds between tubulin dimers using quantum theory of atoms in molecules. Biophys. J. 2014;107:740–750. doi: 10.1016/j.bpj.2014.05.047. PubMed DOI PMC

Li H, DeRosier DJ, Nicholson WV, Nogales E, Downing KH. Microtubule structure at 8 Å resolution. Structure. 2002;10:1317–1328. doi: 10.1016/S0969-2126(02)00827-4. PubMed DOI

Berendsen HJ, Postma JPM, van Gunsteren WF, DiNola A, Haak J. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 1984;81:3684–3690. doi: 10.1063/1.448118. DOI

Hess B, Kutzner C, Van Der Spoel D, Lindahl E. Gromacs 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 2008;4:435–447. doi: 10.1021/ct700301q. PubMed DOI

Malde AK, et al. An automated force field topology builder (atb) and repository: version 1.0. J. Chem. Theory Comput. 2011;7:4026–4037. doi: 10.1021/ct200196m. PubMed DOI

Van Der Spoel D, et al. Gromacs: fast, flexible, and free. J. Comput. Chem. 2005;26:1701–1718. doi: 10.1002/jcc.20291. PubMed DOI

Hess B, Bekker H, Berendsen HJ, Fraaije JG, et al. Lincs: a linear constraint solver for molecular simulations. J. Comput. Chem. 1997;18:1463–1472. doi: 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H. DOI

Bussi G, Donadio D, Parrinello M. Canonical sampling through velocity rescaling. J. Chem. Phys. 2007;126:014101. doi: 10.1063/1.2408420. PubMed DOI

Atilgan A, et al. Anisotropy of fluctuation dynamics of proteins with an elastic network model. Biophys. J. 2001;80:505–515. doi: 10.1016/S0006-3495(01)76033-X. PubMed DOI PMC

Zhang Y, Skolnick J. Tm-align: a protein structure alignment algorithm based on the tm-score. Nucleic Acids Res. 2005;33:2302–2309. doi: 10.1093/nar/gki524. PubMed DOI PMC

Humphrey W, Dalke A, Schulten K. VMD – Visual Molecular Dynamics. J. Mol. Graphics. 1996;14:33–38. doi: 10.1016/0263-7855(96)00018-5. PubMed DOI

Frishman D, Argos P. Knowledge-based secondary structure assignment. Proteins. 1995;23:566–579. doi: 10.1002/prot.340230412. PubMed DOI

Zimmermann MT, Kloczkowski A, Jernigan RL. Mavens: motion analysis and visualization of elastic networks and structural ensembles. BMC Bioinformatics. 2011;12:264. doi: 10.1186/1471-2105-12-264. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Tubulin response to intense nanosecond-scale electric field in molecular dynamics simulation

. 2019 Jul 19 ; 9 (1) : 10477. [epub] 20190719

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...