Deformation pattern in vibrating microtubule: Structural mechanics study based on an atomistic approach
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28652626
PubMed Central
PMC5484714
DOI
10.1038/s41598-017-04272-w
PII: 10.1038/s41598-017-04272-w
Knihovny.cz E-zdroje
- MeSH
- aminokyseliny chemie metabolismus MeSH
- anizotropie MeSH
- konformace proteinů * MeSH
- mechanický stres MeSH
- mikrotubuly chemie metabolismus MeSH
- multimerizace proteinu MeSH
- sekvence aminokyselin MeSH
- simulace molekulární dynamiky * MeSH
- tubulin chemie metabolismus MeSH
- vibrace MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- aminokyseliny MeSH
- tubulin MeSH
The mechanical properties of microtubules are of great importance for understanding their biological function and for applications in artificial devices. Although microtubule mechanics has been extensively studied both theoretically and experimentally, the relation to its molecular structure is understood only partially. Here, we report on the structural analysis of microtubule vibration modes calculated by an atomistic approach. Molecular dynamics was applied to refine the atomic structure of a microtubule and a C α elastic network model was analyzed for its normal modes. We mapped fluctuations and local deformations up to the level of individual aminoacid residues. The deformation is mode-shape dependent and principally different in α-tubulins and β-tubulins. Parts of the tubulin dimer sequence responding specifically to longitudinal and radial stress are identified. We show that substantial strain within a microtubule is located both in the regions of contact between adjacent dimers and in the body of tubulins. Our results provide supportive evidence for the generally accepted assumption that the mechanics of microtubules, including its anisotropy, is determined by the bonds between tubulins.
BIOCEV Institute of Biotechnology The Czech Academy of Sciences Vestec Czechia
Institute of Photonics and Electronics The Czech Academy of Sciences Prague Czechia
Istituto Dalle Molle di studi sull'Intelligenza Artificiale Manno Switzerland
Zobrazit více v PubMed
Howard, J. et al. In Mechanics of motor proteins and the cytoskeleton (Sinauer Associates, 2001).
Odde DJ, Ma L, Briggs AH, DeMarco A, Kirschner MW. Microtubule bending and breaking in living fibroblast cells. J. Cell Sci. 1999;112:3283–3288. PubMed
Kurachi M, Hoshi M, Tashiro H. Buckling of a single microtubule by optical trapping forces: direct measurement of microtubule rigidity. Cell Motil. Cytoskeleton. 1995;30:221–228. doi: 10.1002/cm.970300306. PubMed DOI
Pampaloni F, et al. Thermal fluctuations of grafted microtubules provide evidence of a length-dependent persistence length. P. Natl. Acad. Sci. USA. 2006;103:10248–10253. doi: 10.1073/pnas.0603931103. PubMed DOI PMC
Tuszyński JA, Luchko T, Portet S, Dixon JM. Anisotropic elastic properties of microtubules. Eur. Phys. J. E. 2005;17:29–35. doi: 10.1140/epje/i2004-10102-5. PubMed DOI
Hawkins T, Mirigian M, Yasar MS, Ross JL. Mechanics of microtubules. J. Biomech. 2010;43:23–30. doi: 10.1016/j.jbiomech.2009.09.005. PubMed DOI
Felgner H, et al. Domains of neuronal microtubule-associated proteins and flexural rigidity of microtubules. J. Cell Biol. 1997;138:1067–1075. doi: 10.1083/jcb.138.5.1067. PubMed DOI PMC
Verhey KJ, Gaertig J. The tubulin code. Cell Cycle. 2007;6:2152–2160. doi: 10.4161/cc.6.17.4633. PubMed DOI
Alberts, B. et al. In Molecular Biology of the Cell 3rd edn. (Garland, 1994).
Pampaloni F, Florin E-L. Microtubule architecture: inspiration for novel carbon nanotube-based biomimetic materials. Trends Biotechnol. 2008;26:302–310. doi: 10.1016/j.tibtech.2008.03.002. PubMed DOI
Liew K, Xiang P, Zhang L. Mechanical properties and characteristics of microtubules: A review. Compos. Struct. 2015;123:98–108. doi: 10.1016/j.compstruct.2014.12.020. DOI
Deriu MA, Enemark S, Soncini M, Montevecchi FM, Redaelli A. Tubulin: from atomistic structure to supramolecular mechanical properties. J. Mater. Sci. 2007;42:8864–8872. doi: 10.1007/s10853-007-1784-6. DOI
Enemark S, Deriu MA, Soncini M, Redaelli A. Mechanical model of the tubulin dimer based on molecular dynamics simulations. J. Biomech. Eng. 2008;130:41008. doi: 10.1115/1.2913330. PubMed DOI
Kononova O, et al. Tubulin bond energies and microtubule biomechanics determined from nanoindentation in silico. J. Am. Chem. Soc. 2014;136:17036–17045. doi: 10.1021/ja506385p. PubMed DOI PMC
Molodtsov M, Grishchuk E, Efremov A, McIntosh J, Ataullakhanov F. Force production by depolymerizing microtubules: a theoretical study. P. Natl. Acad. Sci. USA. 2005;102:4353–4358. doi: 10.1073/pnas.0501142102. PubMed DOI PMC
Sept D, Baker NA, McCammon JA. The physical basis of microtubule structure and stability. Protein Sci. 2003;12:2257–2261. doi: 10.1110/ps.03187503. PubMed DOI PMC
VanBuren V, Odde DJ, Cassimeris L. Estimates of lateral and longitudinal bond energies within the microtubule lattice. P. Natl. Acad. Sci. USA. 2002;99:6035–6040. doi: 10.1073/pnas.092504999. PubMed DOI PMC
Deriu MA, et al. Anisotropic elastic network modeling of entire microtubules. Biophys. J. 2010;99:2190–2199. doi: 10.1016/j.bpj.2010.06.070. PubMed DOI PMC
Kovacs JA, Chacón P, Abagyan R. Predictions of protein flexibility: First-order measures. Proteins. 2004;56:661–668. doi: 10.1002/prot.20151. PubMed DOI
Chrétien D, Flyvbjerg H, Fuller SD. Limited flexibility of the inter-protofilament bonds in microtubules assembled from pure tubulin. Eur. Biophys. J. 1998;27:490–500. doi: 10.1007/s002490050159. PubMed DOI
Prota AE, et al. Molecular mechanism of action of microtubule-stabilizing anticancer agents. Science. 2013;339:587–590. doi: 10.1126/science.1230582. PubMed DOI
Alushin GM, et al. High-resolution microtubule structures reveal the structural transitions in α β-tubulin upon GTP hydrolysis. Cell. 2014;157:1117–1129. doi: 10.1016/j.cell.2014.03.053. PubMed DOI PMC
Bahar I, Atilgan AR, Demirel MC, Erman B. Vibrational dynamics of folded proteins: significance of slow and fast motions in relation to function and stability. Phys. Rev. Lett. 1998;80:2733. doi: 10.1103/PhysRevLett.80.2733. DOI
Gebremichael Y, Chu J-W, Voth GA. Intrinsic bending and structural rearrangement of tubulin dimer: molecular dynamics simulations and coarse-grained analysis. Biophys. J. 2008;95:2487–2499. doi: 10.1529/biophysj.108.129072. PubMed DOI PMC
Keskin O, Durell SR, Bahar I, Jernigan RL, Covell DG. Relating molecular flexibility to function: a case study of tubulin. Biophys. J. 2002;83:663–680. doi: 10.1016/S0006-3495(02)75199-0. PubMed DOI PMC
Kucera O, Havelka O, Cifra M. Vibrations of microtubules: Physics that has not met biology yet. Wave Motion. 2017;72:13–22. doi: 10.1016/j.wavemoti.2016.12.006. DOI
Sirenko YM, Stroscio MA, Kim K. Elastic vibrations of microtubules in a fluid. Phys. Rev. E. 1996;53:1003. doi: 10.1103/PhysRevE.53.1003. PubMed DOI
Shen H-S. Nonlinear vibration of microtubules in living cells. Curr. Appl. Phys. 2011;11:812–821. doi: 10.1016/j.cap.2010.11.116. DOI
Shi Y, Guo W, Ru C. Relevance of timoshenko-beam model to microtubules of low shear modulus. Physica E. 2008;41:213–219. doi: 10.1016/j.physe.2008.06.025. DOI
Civalek Ö, Demir C, Akgöz B. Free vibration and bending analyses of cantilever microtubules based on nonlocal continuum model. Math. Comput. Appl. 2010;15:289–298.
Arani AG, Shirali A, Farahani MN, Amir S, Loghman A. Nonlinear vibration analysis of protein microtubules in cytosol conveying fluid based on nonlocal elasticity theory using differential quadrature method. J. Mech. Eng. Sci. 2013;227:137–145. doi: 10.1177/0954406212445151. DOI
Zeverdejani MK, Beni YT. The nano scale vibration of protein microtubules based on modified strain gradient theory. Curr. Appl. Phys. 2013;13:1566–1576. doi: 10.1016/j.cap.2013.05.019. DOI
Arani AG, Abdollahian M, Jalaei M. Vibration of bioliquid-filled microtubules embedded in cytoplasm including surface effects using modified couple stress theory. J. Theor. Biol. 2015;367:29–38. doi: 10.1016/j.jtbi.2014.11.019. PubMed DOI
Heireche H, et al. Nonlocal elasticity effect on vibration characteristics of protein microtubules. Physica E. 2010;42:2375–2379. doi: 10.1016/j.physe.2010.05.017. DOI
Farajpour A, Rastgoo A, Mohammadi M. Surface effects on the mechanical characteristics of microtubule networks in living cells. Mech. Res. Commun. 2014;57:18–26. doi: 10.1016/j.mechrescom.2014.01.005. DOI
Jin M, Ru C. Localized vibration of a microtubule surrounded by randomly distributed cross linkers. J. Biomech. Eng. 2014;136:071002. doi: 10.1115/1.4027413. PubMed DOI
Wang C, Ru C, Mioduchowski A. Orthotropic elastic shell model for buckling of microtubules. Phys. Rev. E. 2006;74:052901. doi: 10.1103/PhysRevE.74.052901. PubMed DOI
Wang C, Ru C, Mioduchowski A. Vibration of microtubules as orthotropic elastic shells. Physica E. 2006;35:48–56. doi: 10.1016/j.physe.2006.05.008. PubMed DOI
Qian X, Zhang J, Ru C. Wave propagation in orthotropic microtubules. J. Appl. Phys. 2007;101:084702. doi: 10.1063/1.2717573. DOI
Gu B, Mai Y-W, Ru C. Mechanics of microtubules modeled as orthotropic elastic shells with transverse shearing. Acta Mech. 2009;207:195–209. doi: 10.1007/s00707-008-0121-8. DOI
Wang C, Li C, Adhikari S. Dynamic behaviors of microtubules in cytosol. J. Biomech. 2009;42:1270–1274. doi: 10.1016/j.jbiomech.2009.03.027. PubMed DOI
Daneshmand F, Ghavanloo E, Amabili M. Wave propagation in protein microtubules modeled as orthotropic elastic shells including transverse shear deformations. J. Biomech. 2011;44:1960–1966. doi: 10.1016/j.jbiomech.2011.05.003. PubMed DOI
Daneshmand F. Microtubule circumferential vibrations in cytosol. J. Eng. Med. 2012;226:589–599. doi: 10.1177/0954411912449945. PubMed DOI
Daneshmand F, Amabili M. Coupled oscillations of a protein microtubule immersed in cytoplasm: an orthotropic elastic shell modeling. J. Biol. Phys. 2012;38:429–448. doi: 10.1007/s10867-012-9263-y. PubMed DOI PMC
Taj M, Zhang J. Analysis of vibrational behaviors of microtubules embedded within elastic medium by pasternak model. Biochem. Bioph. Res. Co. 2012;424:89–93. doi: 10.1016/j.bbrc.2012.06.072. PubMed DOI
Mallakzadeh M, Zanoosi AP, Alibeigloo A. Fundamental frequency analysis of microtubules under different boundary conditions using differential quadrature method. Commun. Nonlinear Sci. 2013;18:2240–2251. doi: 10.1016/j.cnsns.2012.12.014. DOI
Daneshmand F, Farokhi H, Amabili M. A higher-order mathematical modeling for dynamic behavior of protein microtubule shell structures including shear deformation and small-scale effects. Math. Biosci. 2014;252:67–82. doi: 10.1016/j.mbs.2014.03.005. PubMed DOI
Taj M, Zhang J. Analysis of wave propagation in orthotropic microtubules embedded within elastic medium by pasternak model. J. Mech. Behav. Biomed. 2014;30:300–305. doi: 10.1016/j.jmbbm.2013.11.011. PubMed DOI
Pokorný J, Jelnek F, Trkal V, Lamprecht I, Hölzel R. Vibrations in microtubules. J. Biol. Phys. 1997;23:171–179. doi: 10.1023/A:1005092601078. PubMed DOI PMC
Portet S, Tuszyński J, Hogue C, Dixon J. Elastic vibrations in seamless microtubules. Eur. Biophys. J. 2005;34:912–920. doi: 10.1007/s00249-005-0461-4. PubMed DOI
Xiang P, Liew KM. Free vibration analysis of microtubules based on an atomistic-continuum model. J. Sound Vib. 2012;331:213–230. doi: 10.1016/j.jsv.2011.08.024. DOI
Xiang P, Liew KM. Dynamic behaviors of long and curved microtubules based on an atomistic-continuum model. Comput. Method. Appl. M. 2012;223:123–132. doi: 10.1016/j.cma.2012.02.023. DOI
Sun Y, Tian Y, Liew K. A multiscale model to predict the elastic property of microtubules. J. Comp. Theor. Nanos. 2012;9:789–793. doi: 10.1166/jctn.2012.2097. DOI
Xiang P, Zhang L, Liew K. Analysis of macromolecular microtubules using the potential-based matrix displacement method. Compos. Struct. 2015;127:224–230. doi: 10.1016/j.compstruct.2015.03.004. DOI
Rueda M, Chacón P, Orozco M. Thorough validation of protein normal mode analysis: a comparative study with essential dynamics. Structure. 2007;15:565–575. doi: 10.1016/j.str.2007.03.013. PubMed DOI
Ma J. Usefulness and limitations of normal mode analysis in modeling dynamics of biomolecular complexes. Structure. 2005;13:373–380. doi: 10.1016/j.str.2005.02.002. PubMed DOI
Bahar I, Rader A. Coarse-grained normal mode analysis in structural biology. Curr. Opin. Struc. Biol. 2005;15:586–592. doi: 10.1016/j.sbi.2005.08.007. PubMed DOI PMC
Bahar I, Lezon TR, Yang L-W, Eyal E. Global dynamics of proteins: bridging between structure and function. Ann. Rev. Biophys. 2010;39:23. doi: 10.1146/annurev.biophys.093008.131258. PubMed DOI PMC
Löwe J, Li H, Downing K, Nogales E. Refined structure of α β-tubulin at 3.5 Å resolution. J. Mol. Biol. 2001;313:1045–1057. doi: 10.1006/jmbi.2001.5077. PubMed DOI
Nogales E, Wolf SG, Downing K. Structure of the alpha beta tubulin dimer by electron crystallography. Nature. 1998;391:199–203. doi: 10.1038/34465. PubMed DOI
Ayoub AT, Craddock TJ, Klobukowski M, Tuszynski J. Analysis of the strength of interfacial hydrogen bonds between tubulin dimers using quantum theory of atoms in molecules. Biophys. J. 2014;107:740–750. doi: 10.1016/j.bpj.2014.05.047. PubMed DOI PMC
Li H, DeRosier DJ, Nicholson WV, Nogales E, Downing KH. Microtubule structure at 8 Å resolution. Structure. 2002;10:1317–1328. doi: 10.1016/S0969-2126(02)00827-4. PubMed DOI
Berendsen HJ, Postma JPM, van Gunsteren WF, DiNola A, Haak J. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 1984;81:3684–3690. doi: 10.1063/1.448118. DOI
Hess B, Kutzner C, Van Der Spoel D, Lindahl E. Gromacs 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 2008;4:435–447. doi: 10.1021/ct700301q. PubMed DOI
Malde AK, et al. An automated force field topology builder (atb) and repository: version 1.0. J. Chem. Theory Comput. 2011;7:4026–4037. doi: 10.1021/ct200196m. PubMed DOI
Van Der Spoel D, et al. Gromacs: fast, flexible, and free. J. Comput. Chem. 2005;26:1701–1718. doi: 10.1002/jcc.20291. PubMed DOI
Hess B, Bekker H, Berendsen HJ, Fraaije JG, et al. Lincs: a linear constraint solver for molecular simulations. J. Comput. Chem. 1997;18:1463–1472. doi: 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H. DOI
Bussi G, Donadio D, Parrinello M. Canonical sampling through velocity rescaling. J. Chem. Phys. 2007;126:014101. doi: 10.1063/1.2408420. PubMed DOI
Atilgan A, et al. Anisotropy of fluctuation dynamics of proteins with an elastic network model. Biophys. J. 2001;80:505–515. doi: 10.1016/S0006-3495(01)76033-X. PubMed DOI PMC
Zhang Y, Skolnick J. Tm-align: a protein structure alignment algorithm based on the tm-score. Nucleic Acids Res. 2005;33:2302–2309. doi: 10.1093/nar/gki524. PubMed DOI PMC
Humphrey W, Dalke A, Schulten K. VMD – Visual Molecular Dynamics. J. Mol. Graphics. 1996;14:33–38. doi: 10.1016/0263-7855(96)00018-5. PubMed DOI
Frishman D, Argos P. Knowledge-based secondary structure assignment. Proteins. 1995;23:566–579. doi: 10.1002/prot.340230412. PubMed DOI
Zimmermann MT, Kloczkowski A, Jernigan RL. Mavens: motion analysis and visualization of elastic networks and structural ensembles. BMC Bioinformatics. 2011;12:264. doi: 10.1186/1471-2105-12-264. PubMed DOI PMC