• This record comes from PubMed

Vibrations in microtubules

. 1997 Sep ; 23 (3) : 171-9.

Status PubMed-not-MEDLINE Language English Country Netherlands Media print

Document type Journal Article

Vibrations in microtubules and actin filaments are analysed using amethod similar to that employed for description of lattice vibrationsin solid state physics. The derived dispersion relations show thatvibrations in microtubules can have optical and acoustical branches.The highest frequency of vibrations in microtubules and in actinfilaments is of the order of 10(8) Hz. Vibrations are polar andinteraction with surroundings is mediated by the generatedelectromagnetic field. Supply of energy from hydrolysis of guanosinetriphosphate (GTP) in microtubules and of adenosine triphosphate(ATP) in actin filaments may excite the vibrations.

See more in PubMed

Mandelkow E., Mandelkow E.-M., Hotani H., Hess B., Müller S.C. Spatial Patterns from Oscillating Microtubules. Science. 1989;246:1291–1293. PubMed

Alberts B., Bray D., Lewis J., Raff M., Roberts K., Watson J.D. Molecular Biology of the Cell. York & London: Garland Publishing; 1994.

Satarić M. V., Tuszyński J.A., Hameroff S., Zakula R.B. Microtubules and Their Role in Neuromolecular Computing. Neural Network World. 1994;4:281–294.

Tuszyński J.A., Hameroff S., Satarić M.V., Trpisová B., Nip M.L.A. Ferroelectric Behavior in Microtubule Dipole Lattices: Implications for Information Processing, Signaling and Assembly/Disassembly. J. theor. Biol. 1995;174:371–380.

Tuszyński J.A., Trpisová B., Sept D. From Erratic to Coherent Behaviour in the Assembly of Microtubules. Neural Network World. 1995;5:675–688.

Caplow M., Ruhlen R.L., Shanks J. The Free Energy for Hydrolysis of a Microtubule-Bound Nucleotide Triphosphate Is Near Zero: All of the Free Energy for Hydrolysis Is Stored in the Microtubule Lattice. J. Cell Biol. 1994;127:779–788. PubMed PMC

Dekker J.A. Solid State Physics. Englewood Cliffs: Prentice-Hall; 1957.

Käs J., Strey H., Tang J.X., Finger D., Ezzell R., Sackmann E., Janmey P.A. F-Actin, a Model Polymer for Semiflexible Chains in Dilute, Semidilute, and Liquid Crystalline Solutions. Biophys. J. 1996;70:609–625. PubMed PMC

Sato M., Schwartz W.H., Selden S., Pollard T.D. Mechanical Properties of Brain Tubulin and Microtubules. J. Cell Biol. 1988;106:1205–1211. PubMed PMC

Janmey P.A., Euteneuer U., Traub P., Schliwa M. Viscoelastic Properties of Vimentin Compared with Other Filamentous Biopolymer Networks. J. Cell Biol. 1991;113:155–160. PubMed PMC

Leterrier J.F., Käs J., Hartwig J., Vegners R., Janmey P.A. Mechanical Effects of Neuro-filament Cross-bridges. The J. Biol. Chem. 1996;271:15687–15694. PubMed

Janmey P.A. Coping with Cellular Stress: The Mechanical Resistance of Porous Protein Networks. Biophys. J. 1996;71:3–7. PubMed PMC

MacKintosh F.C., Käs J., Janmey P.A. Elasticity of Semiflexible Biopolymer Networks. Phys. Rev. Lett. 1995;75:4425–4428. PubMed

Caplow M., Shanks J. Induction of Microtubule Catastrophe by Formation of Tubulin–GDP and Apotubulin Subunits at Microtubule Ends. Biochemistry. 1995;34:15732–15741. PubMed

Caplow M., Shanks J. Evidence that a Single Monolayer Tubulin–GTP Cap Is Both Necessary and Sufficient to Stabilize Microtubules. Molec. Biol. Cell. 1996;7:663–675. PubMed PMC

Satarić M.V., Tuszyński J.A., Žakula R.B. Kinklike excitations as an energy-transfer mechanism in microtubules. Phys. Rev. E. 1993;48:589–597. PubMed

Fröhlich H. Bose Condensation of Strongly Excited Longitudinal Electric Modes. Phys. Lett. 1968;26A:402–403.

Fröhlich H. Long-range coherence and energy storage in biological systems. Int. J. Quant. Chem. 1968;II:641–649.

Fröhlich H. The Biological Effects of Microwaves and Related Questions. Advances in Electronics and Electron Phys. 1980;53:85–152.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...