Generation of Electromagnetic Field by Microtubules
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
34360980
PubMed Central
PMC8348406
DOI
10.3390/ijms22158215
PII: ijms22158215
Knihovny.cz E-zdroje
- Klíčová slova
- helical and axial periodicity, ionization, microtubules, near-field dipole theory, oscillation cavity, water potential layer,
- MeSH
- elektromagnetická pole * MeSH
- mikrotubuly chemie MeSH
- Publikační typ
- časopisecké články MeSH
The general mechanism of controlling, information and organization in biological systems is based on the internal coherent electromagnetic field. The electromagnetic field is supposed to be generated by microtubules composed of identical tubulin heterodimers with periodic organization and containing electric dipoles. We used a classical dipole theory of generation of the electromagnetic field to analyze the space-time coherence. The structure of microtubules with the helical and axial periodicity enables the interaction of the field in time shifted by one or more periods of oscillation and generation of coherent signals. Inner cavity excitation should provide equal energy distribution in a microtubule. The supplied energy coherently excites oscillators with a high electrical quality, microtubule inner cavity, and electrons at molecular orbitals and in 'semiconduction' and 'conduction' bands. The suggested mechanism is supposed to be a general phenomenon for a large group of helical systems.
Zobrazit více v PubMed
Fröhlich H. Bose condensation of strongly excited longitudinal electric modes. Phys. Lett. A. 1968;26:402–403. doi: 10.1016/0375-9601(68)90242-9. DOI
Fröhlich H. Long-range coherence and energy storage in biological systems. Int. J. Quantum Chem. 1968;2:641–649. doi: 10.1002/qua.560020505. DOI
Fröhlich H. Quantum mechanical concepts in biology. In: Marois M., editor. Theoretical Physics and Biology, Proceedings of The First International Conference on Theoretical Physics and Biology, Versailles, France, 26–30 June 1967. North Holland Publishing Co.; North Holland, Amsterdam: 1969. pp. 13–22.
Fröhlich H. The biological effects of microwaves and related questions. In: Marton L., Marton C., editors. Advances in Electronics and Electron Physics. Volume 53. Elsevier; Amsterdam, The Netherlands: Academic Press; New York, NY, USA: London, UK: Toronto, ON, Canada: Sydney, Australia: San Francisco, CA, USA: 1980. pp. 85–152. DOI
Pokorný J., Wu T.-M. Biophysical Aspects of Coherence and Biological Order. Springer; Berlin/Heidelberg, Germany: New York, NY, USA: Academia; Prague, Czech Republic: 1998.
Preparata G. QED Coherence in Matter. Word Scientific; Singapore: 1995.
Pokorný J., Pokorný J., Kobilková J. Postulates on electromagnetic activity in biological systems and cancer. Integr. Biol. 2013;5:1439–1446. doi: 10.1039/c3ib40166a. PubMed DOI
Foletti A., Brizhik L. Nonlinearity, coherence and complexity: Biophysical aspects related to health and disease. Electromagn. Biol. Med. 2017;36:315–324. doi: 10.1080/15368378.2017.1371034. PubMed DOI
Kasas S., Ruggeri F.S., Benadiba C., Maillard C., Stupar P., Tournu H., Dietler G., Longo G. Detecting nanoscale vibrations as signature of life. Proc. Natl. Acad. Sci. USA. 2015;112:297–298. doi: 10.1073/pnas.1415348112. PubMed DOI PMC
Pokorný J., Hašek J., Jelínek F., Šaroch J., Palán B. Electromagnetic activity of yeast cells in the M phase. Electro Magn. 2001;20:371–396. doi: 10.1081/JBC-100108577. DOI
Del Giudice E., Tedeschi A. Water and autocatalysis in living matter. Electromagn. Biol. Med. 2009;28:46–52. doi: 10.1080/15368370802708728. PubMed DOI
Pohl H.A., Braden T., Robinson S., Piclardi J., Pohl D.G. Life cycle alterations of the micro-dielectrophoretic effects of cells. J. Biol. Phys. 1981;9:133–154. doi: 10.1007/BF01988247. DOI
Albrecht-Buehler G. Surface extensions of 3T3 cells towards distant infrared light sources. J. Cell. Biol. 1991;114:493–502. doi: 10.1083/jcb.114.3.493. PubMed DOI PMC
Albrecht-Buehler G. Rudimentary form of cellular “vision”. Proc. Natl. Acad. Sci. USA. 1992;89:8288–8293. doi: 10.1073/pnas.89.17.8288. PubMed DOI PMC
Albrecht-Buehler G. A long-range attraction between aggregating 3T3 cells mediated by near-infrared light scattering. Proc. Natl. Acad. Sci. USA. 2005;102:5050–5055. doi: 10.1073/pnas.0407763102. PubMed DOI PMC
Hölzel R. Electric activity of non-excitable biological cells at radio frequencies. Electro Magn. 2001;20:1–13. doi: 10.1081/JBC-100103156. DOI
Jelínek F., Cifra M., Pokorný J., Vaniš J., Šimša J., Hašek J., Frýdlová I. Measurement of electrical oscillations and mechanical vibrations of yeast cells membrane around 1kHz. Electromagn. Biol. Med. 2009;28:223–232. doi: 10.1080/15368370802710807. PubMed DOI
Craddock T.J.A., Tuszynski J.A., Hameroff S. Cytoskeletal signaling: Is memory encoded in microtubule lattices by CaMKII phosphorylation? PLoS Comput. Biol. 2012;8:e1002421. doi: 10.1371/journal.pcbi.1002421. PubMed DOI PMC
Tuszynski J.A., Friesen D., Freedman H., Sbitnef V.I., Kim H., Santelices I., Kalra A.P., Patel S.D., Shankar K., Chua L.O. Microtubules as sub-cellular memristors. Sci. Rep. 2020;10:2108. doi: 10.1038/s41598-020-58820-y. PubMed DOI PMC
Amos L.A., Klug A. Arrangement of subunits in flagellar microtubules. J. Cell Sci. 1974;14:523–549. doi: 10.1242/jcs.14.3.523. PubMed DOI
Amos L.A. Structure of microtubules. In: Roberts K., Hyams J.S., editors. Microtubules. Elsevier; Amsterdam, The Netherlands: Academic Press; New York, NY, USA: London, UK: Toronto, ON, Canada: Sydney, Australia: San Francisco, CA, USA: 1979. pp. 1–64.
Satarić M., Tuszyński J.A., Žakula R.B. Kinklike excitation as an energy transfer mechanism in microtubules. Phys. Rev. E. 1993;8:589–597. doi: 10.1103/PhysRevE.48.589. PubMed DOI
Tuszyński J.A., Hameroff S., Satarić M., Trpisová B., Nip M.L.A. Ferroelectric behavior in microtubule dipole lattices: Implications for conformation processing, signalling and assembly/disassembly. J. Theor. Biol. 1995;174:371–380. doi: 10.1006/jtbi.1995.0105. DOI
Sahu S., Ghosh S., Ghosh B., Aswani K., Hirata K., Fujita D., Bandyopadhyay A. Atomic water channel controlling remarkable properties of a single brain microtubule: Correlating single protein to its supramolecular assembly. Biosens. Bioelectron. 2013;47:141–148. doi: 10.1016/j.bios.2013.02.050. PubMed DOI
Sahu S., Ghosh S., Hirata K., Fujita D., Bandyopadhyay A. Multi-level memory switching properties of a single brain microtubule. Appl. Phys. Lett. 2013;102:123701. doi: 10.1063/1.4793995. DOI
Sahu S., Ghosh S., Fujita D., Bandyopadhyay A. Live visualizations of single isolated tubulin protein self-assembly via tunnelling current: Effect of electromagnetic pumping during spontaneous growth of microtubule. Sci. Rep. 2014;4:7303. doi: 10.1038/srep07303. PubMed DOI PMC
Cosic I., Lazar K., Cosic D. Prediction of tubulin resonant frequencies using the resonant recognition model (RRM) IEEE Trans. Nanobiosci. 2015;14:491–496. doi: 10.1109/TNB.2014.2365851. PubMed DOI
Priel A., Ramos A.J., Tuszyński J.A., Cantiello H.F. A biopolymer transistor: Electric amplification by microtubules. Biophys. J. 2006;90:4639–4643. doi: 10.1529/biophysj.105.078915. PubMed DOI PMC
Gurwitsch A. Die Natur des spezifischen Erregers der Zellteilung. Arch. Mikrosk. Anat. Entw. Mech. 1923;100:11–40. doi: 10.1007/BF02111053. DOI
Volodyaev I., Beloussov L.V. Revisiting the mitogenetic effect of ultra-weak photonemission. Front. Physiol. 2015;6:241. doi: 10.3389/fphys.2015.00241. PubMed DOI PMC
Craddock T.J.A., Kurian P., Preto J., Sahu K., Hameroff S.R., Klobukowski M., Tuszynski J.A. Anesthetic alterations of collective terahertz oscillations in tubulin correlate with clinical potency: Implications for anesthetic action and post-operative cognitive dysfunction. Sci. Rep. 2017;29:9877. doi: 10.1038/s41598-017-09992-7. PubMed DOI PMC
Duke A.R., Jenkins M.W., Lu H., McManus J.M., Chiel H.J., Jansen E.D. Transient and selective suppression of neural activity with infrared light. Sci. Rep. 2013;3:2600. doi: 10.1038/srep02600. PubMed DOI PMC
Yoo S., Hong S., Choi Y., Park J.-H., Nam Y. Photothermal inhibition of neural activity with near-infrared-sensitive nanotransducers. ACS Nano. 2014;8:8040–8049. doi: 10.1021/nn5020775. PubMed DOI
Rafati Y., Cantu J.C., Sedelnikova A., Tolstykh G.P., Peralta X.G., Valdez C., Echchgadda I. Optical Interactions with Tissue and Cells XXXI. Volume 11238. SPIE; Bellingham, WA, USA: 2020. Effect of microtubule resonant frequencies on neuronal cells. DOI
Singh P., Ghosh S., Sahoo P., Bandyopadhyay A. Electrophysiology using coaxial atom probe array; Live imaging reveals hidden circuits of a hippocampal neural network. J. Neurophysiol. 2021 doi: 10.1152/jn.00478.2020. PubMed DOI
Fröhlich H. Coherent electric vibrations in biological systems and cancer problem. IEEE Trans. MTT. 1978;26:613–617. doi: 10.1109/TMTT.1978.1129446. DOI
Pokorný J., Jelínek F., Trkal V., Lamprecht I., Hölzel R. Vibrations in microtubules. J. Biol. Phys. 1997;23:171–179. doi: 10.1023/A:1005092601078. PubMed DOI PMC
Böhm K.J., Mavromatos N.E., Michette A., Stracke R., Unger E. Movement and alignment of microtubules in electric fields and electric-dipole-moment estimates. Electromagn. Biol. Med. 2005;24:319–330. doi: 10.1080/15368370500380010. DOI
Schoutens J.E. Dipole–dipole interactions in microtubules. J. Biol. Phys. 2005;31:35–55. doi: 10.1007/s10867-005-3886-1. PubMed DOI PMC
Sataric M.V., Tuszynski J.A. Nonlinear dynamics of microtubules: Biophysical implications. J. Biol. Phys. 2005;31:487–500. doi: 10.1007/s10867-005-7288-1. PubMed DOI PMC
Alberts B., Bray D., Lewis J., Raff M., Roberts K., Watson J.D. Molecular Biology of the Cell. 3rd ed. Garland Publishing, Inc.; New York, NY, USA: London, UK: 1994.
Stebbings H., Hunt C. The nature of the clear zone around microtubules. Cell. Tissue Res. 1982;227:609–617. doi: 10.1007/BF00204791. PubMed DOI
Zheng J.-M., Chin W.-C., Khijniak E., Khijniak E., Jr., Pollack G.H. Surfaces and interfacial water: Evidence that hydrophilic surfaces have long-range impact. Adv. Colloid Interface Sci. 2006;127:19–27. doi: 10.1016/j.cis.2006.07.002. PubMed DOI
Modica-Napolitano J.S., Aprille J.R. Basis for selective cytotoxicity of Rhodamine 123. Cancer Res. 1987;47:4361–4365. PubMed
Warburg O., Posener K., Negelein E. Über den Stoffwechsell der Carzinomzelle. Biochem. Z. 1924;152:309–344.
Pokorný J., Pokorný J., Borodavka F. Warburg effect–damping of electromagnetic oscillations. Electromagn. Biol. Med. 2017;36:270–278. doi: 10.1080/15368378.2017.1326933. PubMed DOI
Dicke R.H., Wittke J.P. Introduction to Quantum Mechanics. Addison–Wesley Publishing Co.; Massachusetts, MA, USA: London, UK: 1961.
Šrobár F. Radiating Fröhlich system as a model of cellular electromagnetism. Electromagn. Biol. Med. 2015;34:355–360. doi: 10.3109/15368378.2014.934381. PubMed DOI
Šrobár F. Impact of mitochondrial electric field on modal occupancy in the Fröhlich model of cellular electromagnetism. Electromagn. Biol. Med. 2013;32:401–408. doi: 10.3109/15368378.2012.735207. PubMed DOI
Derjaguin B.V. Die Formelastizität der dünnen Wasserschichten. Prog. Surf. Sci. 1933;84:657–670. doi: 10.1016/0079-6816(92)90055-M. DOI
Zheng J., Pollack G.H. Long-range forces extending from polymer–gel surfaces. Phys. Rev. E. 2003;68 doi: 10.1103/PhysRevE.68.031408. PubMed DOI
Marais A., Adams B., Ringsmuth A.K., Ferretti M., Gruber J.M., Hendrikx R., Schuld M., Smith S.L., Sinayskiy I., Krüger T.P.J., et al. The future of quantum biology. J. Royal Soc. Interface. 2018;15 doi: 10.1098/rsif.2018.0640. PubMed DOI PMC
Pokorný J., Pokorný J., Jandová A., Kobilková J., Vrba J., Vrba J., Jr. Energy parasites trigger oncogene mutation. Int. J. Rad. Biol. 2016;92:577–582. doi: 10.1080/09553002.2016.1222095. PubMed DOI
Stratton J.A. Electromagnetic Theory. McGraw–Hill Book Co. Inc.; New York, NY, USA: 1941. pp. 434–437, 492–497.