Neurophysiological mechanisms of circadian cognitive control in RLS patients - an EEG source localization study

. 2017 ; 15 () : 644-652. [epub] 20170615

Jazyk angličtina Země Nizozemsko Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid28664035
Odkazy

PubMed 28664035
PubMed Central PMC5480014
DOI 10.1016/j.nicl.2017.06.018
PII: S2213-1582(17)30149-3
Knihovny.cz E-zdroje

The circadian variation of sensory and motor symptoms with increasing severity in the evening and at night is a key diagnostic feature/symptom of the restless legs syndrome (RLS). Even though many neurological diseases have shown a strong nexus between motor and cognitive symptoms, it has remained unclear whether cognitive performance of RLS patients declines in the evening and which neurophysiological mechanisms are affected by the circadian variation. In the current study, we examined daytime effects (morning vs. evening) on cognitive performance in RLS patients (n = 33) compared to healthy controls (n = 29) by analyzing flanker interference effects in combination with EEG and source localization techniques. RLS patients showed larger flanker interference effects in the evening than in the morning (p = .023), while healthy controls did not display a comparable circadian variation. In line with this, the neurophysiological data showed smaller N1 amplitudes in RLS patients compared to controls in the interfering task condition in the evening (p = .042), but not in the morning. The results demonstrate diurnal cognitive changes in RLS patients with intensified impairments in the evening. It seems that not all dopamine-regulated cognitive processes are altered in RLS and thus show daytime-dependent impairments. Instead, the daytime-related cognitive impairment emerges from attentional selection processes within the extra-striate visual cortex, but not from later cognitive processes such as conflict monitoring and response selection.

Zobrazit více v PubMed

Albin R.L., Young A.B., Penney J.B. The functional anatomy of disorders of the basal ganglia. Trends Neurosci. 1995;18:63–64. PubMed

Allen R.P., Earley C.J. Restless legs syndrome: a review of clinical and pathophysiologic features. J. Clin. Neurophysiol. Off. Publ. Am. Electroencephalogr. Soc. 2001;18:128–147. PubMed

Allen R.P., Walters A.S., Montplaisir J., Hening W., Myers A., Bell T.J., Ferini-Strambi L. Restless legs syndrome prevalence and impact: REST general population study. Arch. Intern. Med. 2005;165:1286–1292. PubMed

Allen R.P., Connor J.R., Hyland K., Earley C.J. Abnormally increased CSF 3-Ortho-methyldopa (3-OMD) in untreated restless legs syndrome (RLS) patients indicates more severe disease and possibly abnormally increased dopamine synthesis. Sleep Med. 2009;10:123–128. PubMed PMC

Allen R.P., Barker P.B., Horská A., Earley C.J. Thalamic glutamate/glutamine in restless legs syndrome: increased and related to disturbed sleep. Neurology. 2013;80:2028–2034. PubMed PMC

Allen R.P., Picchietti D.L., Garcia-Borreguero D., Ondo W.G., Walters A.S., Winkelman J.W., Zucconi M., Ferri R., Trenkwalder C., Lee H.B., International Restless Legs Syndrome Study Group Restless legs syndrome/Willis-Ekbom disease diagnostic criteria: updated International Restless Legs Syndrome Study Group (IRLSSG) consensus criteria--history, rationale, description, and significance. Sleep Med. 2014;15:860–873. PubMed

Barceló F., Suwazono S., Knight R.T. Prefrontal modulation of visual processing in humans. Nat. Neurosci. 2000;3:399–403. PubMed

Barrière G., Cazalets J.R., Bioulac B., Tison F., Ghorayeb I. The restless legs syndrome. Prog. Neurobiol. 2005;77:139–165. PubMed

Beck A.T., Ward C.H., Mendelson M., Mock J., Erbaugh J. An inventory for measuring depression. Arch. Gen. Psychiatry. 1961;4:561–571. PubMed

Benton A.L. A visual retention test for clinical use. Arch. Neurol. Psychiatr. 1945;54:212–216. PubMed

Beste C., Saft C., Yordanova J., Andrich J., Gold R., Falkenstein M., Kolev V. Functional compensation or pathology in cortico-subcortical interactions in preclinical Huntington's disease? Neuropsychologia. 2007;45:2922–2930. PubMed

Beste C., Saft C., Andrich J., Gold R., Falkenstein M. Stimulus-response compatibility in Huntington's disease: a cognitive-neurophysiological analysis. J. Neurophysiol. 2008;99:1213–1223. PubMed

Beste C., Saft C., Konrad C., Andrich J., Habbel A., Schepers I., Jansen A., Pfleiderer B., Falkenstein M. Levels of error processing in Huntington's disease: a combined study using event-related potentials and voxel-based morphometry. Hum. Brain Mapp. 2008;29:121–130. PubMed PMC

Beste C., Baune B.T., Falkenstein M., Konrad C. Variations in the TNF-α Gene (TNF-α-308G → a) affect attention and action selection mechanisms in a dissociated fashion. J. Neurophysiol. 2010;104:2523–2531. PubMed

Beste C., Mückschel M., Elben S., Hartmann C.J., McIntyre C.C., Saft C., Vesper J., Schnitzler A., Wojtecki L. Behavioral and neurophysiological evidence for the enhancement of cognitive control under dorsal pallidal deep brain stimulation in Huntington's disease. Brain Struct. Funct. 2015;220:2441–2448. PubMed

Beste C., Mückschel M., Rosales R., Domingo A., Lee L., Ng A., Klein C., Münchau A. Striosomal dysfunction affects behavioral adaptation but not impulsivity-evidence from X-linked dystonia-parkinsonism. Mov. Disord. Off. J. Mov. Disord. Soc. 2017;32:576–584. PubMed

Blatter K., Cajochen C. Circadian rhythms in cognitive performance: methodological constraints, protocols, theoretical underpinnings. Physiol. Behav. 2007;90:196–208. http://dx.doi.org/10.1016/j.physbeh.2006.09.009 Includes a Special Section on Chronobiology Aspects of the Sleep--Wake Cycle and Thermoreregulation. PubMed DOI

Botvinick M.M., Braver T.S., Barch D.M., Carter C.S., Cohen J.D. Conflict monitoring and cognitive control. Psychol. Rev. 2001;108:624–652. PubMed

Brickenkamp R., Schmidt-Atzert L., Liepmann D. Hogrefe; Göttingen: 2010. Test d2-Revision.

Cagigas X.E., Vincent Filoteo J., Stricker J.L., Rilling L.M., Friedrich F.J. Flanker compatibility effects in patients with Parkinson's disease: impact of target onset delay and trial-by-trial stimulus variation. Brain Cogn. 2007;63:247–259. PubMed PMC

Cervenka S., Pålhagen S.E., Comley R.A., Panagiotidis G., Cselényi Z., Matthews J.C., Lai R.Y., Halldin C., Farde L. Support for dopaminergic hypoactivity in restless legs syndrome: a PET study on D2-receptor binding. Brain J. Neurol. 2006;129:2017–2028. PubMed

Chmielewski W.X., Mückschel M., Roessner V., Beste C. Expectancy effects during response selection modulate attentional selection and inhibitory control networks. Behav. Brain Res. 2014;274:53–61. PubMed

Choi J.W., Ko D., Lee G.-T., Jung K.-Y., Kim K.H. Reduced neural synchrony in patients with restless legs syndrome during a visual oddball task. PLoS One. 2012;7 PubMed PMC

Chudasama Y., Robbins T.W. Functions of frontostriatal systems in cognition: comparative neuropsychopharmacological studies in rats, monkeys and humans. Biol. Psychol. 2006;73:19–38. PubMed

Clemens S., Rye D., Hochman S. Restless legs syndrome: revisiting the dopamine hypothesis from the spinal cord perspective. Neurology. 2006;67:125–130. PubMed

Cohen M.X. MIT Press; 2014. Analyzing Neural Time Series Data: Theory and Practice.

Desimone R. Visual attention mediated by biased competition in extrastriate visual cortex. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 1998;353:1245–1255. PubMed PMC

Dijk D.-J., Duffy J.F., Czeisler C.A. Circadian and sleep/wake dependent aspects of subjective alertness and cognitive performance. J. Sleep Res. 1992;1:112–117. PubMed

Dippel G., Beste C. A causal role of the right inferior frontal cortex in implementing strategies for multi-component behaviour. Nat. Commun. 2015;6:6587. PubMed

Domínguez-López S., Howell R.D., López-Canúl M.G., Leyton M., Gobbi G. Electrophysiological characterization of dopamine neuronal activity in the ventral tegmental area across the light-dark cycle. Synap. N. Y. 2014;68:454–467. PubMed

Earley C.J., Hyland K., Allen R.P. Circadian changes in CSF dopaminergic measures in restless legs syndrome. Sleep Med. 2006;7:263–268. PubMed

Earley C.J., Kuwabara H., Wong D.F., Gamaldo C., Salas R.E., Brašić J.R., Ravert H.T., Dannals R.F., Allen R.P. Increased synaptic dopamine in the putamen in restless legs syndrome. Sleep. 2013;36:51–57. PubMed PMC

Eimer M., Hommel B., Prinz W. S-R compatibility and response selection. Acta Psychol. (Amst.) 1995;90:301–313. http://dx.doi.org/10.1016/0001-6918(95)00022-M Discrete and Continuous Information Processing. DOI

Eriksen B.A., Eriksen C.W. Effects of noise letters upon the identification of a target letter in a nonsearch task. Percept. Psychophys. 1974;16:143–149.

Falkenstein M., Willemssen R., Hohnsbein J., Hielscher H. Effects of stimulus-response compatibility in Parkinson's disease: a psychophysiological analysis. J. Neural Transm. 2006;113:1449–1462. PubMed

Folstein J.R., Van Petten C. Influence of cognitive control and mismatch on the N2 component of the ERP: a review. Psychophysiology. 2008;45:152–170. PubMed PMC

Fuchs M., Kastner J., Wagner M., Hawes S., Ebersole J.S. A standardized boundary element method volume conductor model. Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol. 2002;113:702–712. PubMed

Fulda S., Beitinger M.E., Reppermund S., Winkelmann J., Wetter T.C. Short-term attention and verbal fluency is decreased in restless legs syndrome patients. Mov. Disord. Off. J. Mov. Disord. Soc. 2010;25:2641–2648. PubMed

Fulda S., Szesny N., Ising M., Heck A., Grübl A., Lieb R., Reppermund S. Further evidence for executive dysfunction in subjects with RLS from a non-clinical sample. Sleep Med. 2011;12:1003–1007. PubMed

Garcia-Borreguero D. Time to REST: epidemiology and burden. Eur. J. Neurol. 2006;13(Suppl. 3):15–20. PubMed

Garcia-Borreguero D., Larrosa O., Granizo J.J., de la Llave Y., Hening W.A. Circadian variation in neuroendocrine response to L-dopa in patients with restless legs syndrome. Sleep. 2004;27:669–673. PubMed

Garcia-Borreguero D., Serrano C., Larrosa O., Granizo J.J. Circadian effects of dopaminergic treatment in restless legs syndrome. Sleep Med. 2004;5:413–420. PubMed

Haber S.N. Corticostriatal circuitry. Dialogues Clin. Neurosci. 2016;18:7–21. PubMed PMC

Helmstaedter C., Lendt M., Lux S. Hogrefe Verl. Für Psychol; Gött: 2001. Verbaler Lern- und Merkfähigkeitstest.

Hening W., Allen R., Earley C., Kushida C., Picchietti D., Silber M. The treatment of restless legs syndrome and periodic limb movement disorder. An American Academy of Sleep Medicine Review. Sleep. 1999;22:970–999. PubMed

Herrmann C.S., Knight R.T. Mechanisms of human attention: event-related potentials and oscillations. Neurosci. Biobehav. Rev. 2001;25:465–476. PubMed

Hillyard S.A., Anllo-Vento L. Event-related brain potentials in the study of visual selective attention. Proc. Natl. Acad. Sci. U. S. A. 1998;95:781–787. PubMed PMC

Horne J.A., Ostberg O. A self-assessment questionnaire to determine morningness-eveningness in human circadian rhythms. Int. J. Chronobiol. 1976;4:97–110. PubMed

Jensen A.R., Rohwer W.D., Jr. The stroop color-word test: a review. Acta Psychol. 1966;25:36–93. PubMed

Jung K.-Y., Koo Y.-S., Kim B.-J., Ko D., Lee G.-T., Kim K.H., Im C.H. Electrophysiologic disturbances during daytime in patients with restless legs syndrome: further evidence of cognitive dysfunction? Sleep Med. 2011;12:416–421. PubMed

Kähkönen S., Ahveninen J., Pekkonen E., Kaakkola S., Huttunen J., Ilmoniemi R.J., Jääskeläinen I.P. Dopamine modulates involuntary attention shifting and reorienting: an electromagnetic study. Clin. Neurophysiol. 2002;113:1894–1902. PubMed

Kastner S., Weerd P.D., Desimone R., Ungerleider L.G. Mechanisms of directed attention in the human extrastriate cortex as revealed by functional MRI. Science. 1998;282:108–111. PubMed

Kawano Y., Kawasaki T., Kawazoe N., Abe I., Uezono K., Ueno M., Fukiyama K., Omae T. Circadian variations of urinary dopamine, norepinephrine, epinephrine and sodium in normotensive and hypertensive subjects. Nephron. 1990;55:277–282. PubMed

Knight R.T. Distributed cortical network for visual attention. J. Cogn. Neurosci. 1997;9:75–91. PubMed

Kok A. On the utility of P3 amplitude as a measure of processing capacity. Psychophysiology. 2001;38:557–577. PubMed

Kopp B., Rist F., Mattler U. N200 in the flanker task as a neurobehavioral tool for investigating executive control. Psychophysiology. 1996;33:282–294. PubMed

Luck S.J., Heinze H.J., Mangun G.R., Hillyard S.A. Visual event-related potentials index focused attention within bilateral stimulus arrays. II. Functional dissociation of P1 and N1 components. Electroencephalogr. Clin. Neurophysiol. 1990;75:528–542. PubMed

Luck S.J., Woodman G.F., Vogel E.K. Event-related potential studies of attention. Trends Cogn. Sci. 2000;4(11):432–440. PubMed

Masson M.E.J. A tutorial on a practical Bayesian alternative to null-hypothesis significance testing. Behav. Res. Methods. 2011;43:679–690. PubMed

Mazziotta J., Toga A., Evans A., Fox P., Lancaster J., Zilles K., Woods R., Paus T., Simpson G., Pike B., Holmes C., Collins L., Thompson P., MacDonald D., Iacoboni M., Schormann T., Amunts K., Palomero-Gallagher N., Geyer S., Parsons L., Narr K., Kabani N., Le Goualher G., Boomsma D., Cannon T., Kawashima R., Mazoyer B. A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM) Philos. Trans. R. Soc. Lond. Ser. B. 2001;356:1293–1322. PubMed PMC

Michaud M., Soucy J.-P., Chabli A., Lavigne G., Montplaisir J. SPECT imaging of striatal pre- and postsynaptic dopaminergic status in restless legs syndrome with periodic leg movements in sleep. J. Neurol. 2002;249:164–170. PubMed

Moore H., Fadel J., Sarter M., Bruno J.P. Role of accumbens and cortical dopamine receptors in the regulation of cortical acetylcholine release. Neuroscience. 1999;88:811–822. PubMed

Mückschel M., Stock A.-K., Beste C. Psychophysiological mechanisms of interindividual differences in goal activation modes during action cascading. Cereb. Cortex N. Y. 2014;1991(24):2120–2129. PubMed

Müller T., Benz S., Przuntek H. Choice reaction time after levodopa challenge in parkinsonian patients. J. Neurol. Sci. 2000;181:98–103. PubMed

Müller T., Benz S., Börnke C. Delay of simple reaction time after levodopa intake. Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol. 2001;112:2133–2137. PubMed

Müller T., Benz S., Przuntek H. Apomorphine delays simple reaction time in Parkinsonian patients. Parkinsonism Relat. Disord. 2002;8:357–360. PubMed

Nieoullon A. Dopamine and the regulation of cognition and attention. Prog. Neurobiol. 2002;67:53–83. PubMed

Nunez P.L., Pilgreen K.L. The spline-Laplacian in clinical neurophysiology: a method to improve EEG spatial resolution. J. Clin. Neurophysiol. Off. Publ. Am. Electroencephalogr. Soc. 1991;8:397–413. PubMed

Pascual-Marqui R.D. Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find. Exp. Clin. Pharmacol. 2002;24(Suppl D):5–12. PubMed

Pearson V.E., Allen R.P., Dean T., Gamaldo C.E., Lesage S.R., Earley C.J. Cognitive deficits associated with restless legs syndrome (RLS) Sleep Med. 2006;7:25–30. PubMed

Penner I.K., Raselli C., Stöcklin M., Opwis K., Kappos L., Calabrese P. The Fatigue Scale for Motor and Cognitive Functions (FSMC): validation of a new instrument to assess multiple sclerosis-related fatigue. Mult. Scler. Houndmills Basingstoke Engl. 2009;15:1509–1517. PubMed

Perrin F., Pernier J., Bertrand O., Echallier J.F. Spherical splines for scalp potential and current density mapping. Electroencephalogr. Clin. Neurophysiol. 1989;72:184–187. PubMed

Polich J. Updating P300: an integrative theory of P3a and P3b. Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol. 2007;118:2128–2148. PubMed PMC

Praamstra P., Stegeman D.F., Cools A.R., Horstink M.W.I.M. Reliance on external cues for movement initiation in Parkinson's disease. Evidence from movement-related potentials. Brain. 1998;121:167–177. PubMed

Praamstra P., Plat E.M., Meyer A.S., Horstink M.W.I.M. Motor cortex activation in Parkinson's disease: dissociation of electrocortical and peripheral measures of response generation. Mov. Disord. 1999;14:790–799. PubMed

Raftery A.E. Bayesian model selection in social research. Sociol. Methodol. 1995;25:111–163.

Ridderinkhof K.R., van der Molen M.W., Bashore T.R. Limits on the application of additive factors logic: violations of stage robustness suggest a dual-process architecture to explain flanker effects on target processing. Acta Psychol. (Amst.) 1995;90:29–48. http://dx.doi.org/10.1016/0001-6918(95)00031-O Discrete and Continuous Information Processing. DOI

Russell V., de Villiers A., Sagvolden T., Lamm M., Taljaard J. Altered dopaminergic function in the prefrontal cortex, nucleus accumbens and caudate-putamen of an animal model of attention-deficit hyperactivity disorder--the spontaneously hypertensive rat. Brain Res. 1995;676:343–351. PubMed

Sagvolden T. Behavioral validation of the spontaneously hypertensive rat (SHR) as an animal model of attention-deficit/hyperactivity disorder (AD/HD) Neurosci. Biobehav. Rev. 2000;24:31–39. PubMed

Sarter M., Gehring W.J., Kozak R. More attention must be paid: the neurobiology of attentional effort. Brain Res. Rev. 2006;51:145–160. PubMed

Schneider D., Beste C., Wascher E. Attentional capture by irrelevant transients leads to perceptual errors in a competitive change detection task. Front. Psychol. 2012;3:164. PubMed PMC

Schultz W. Predictive reward signal of dopamine neurons. J. Neurophysiol. 1998;80:1–27. PubMed

Sekihara K., Sahani M., Nagarajan S.S. Localization bias and spatial resolution of adaptive and non-adaptive spatial filters for MEG source reconstruction. NeuroImage. 2005;25:1056–1067. PubMed PMC

Shine J.M., Halliday G.M., Naismith S.L., Lewis S.J.G. Visual misperceptions and hallucinations in Parkinson's disease: dysfunction of attentional control networks? Mov. Disord. 2011;26:2154–2159. PubMed

Silkis I. A hypothetical role of cortico-basal ganglia-thalamocortical loops in visual processing. Biosystems. 2007;89:227–235. PubMed

Staedt J., Stoppe G., Kögler A., Munz D., Riemann H., Emrich D., Rüther E. Dopamine D2 receptor alteration in patients with periodic movements in sleep (nocturnal myoclonus) J. Neural Transm. Gen. Sect. 1993;93:71–74. PubMed

Staedt J., Stoppe G., Kögler A., Riemann H., Hajak G., Munz D.L., Emrich D., Rüther E. Nocturnal myoclonus syndrome (periodic movements in sleep) related to central dopamine D2-receptor alteration. Eur. Arch. Psychiatry Clin. Neurosci. 1995;245:8–10. PubMed

Staedt J., Stoppe G., Kögler A., Riemann H., Hajak G., Munz D.L., Emrich D., Rüther E. Single photon emission tomography (SPET) imaging of dopamine D2 receptors in the course of dopamine replacement therapy in patients with nocturnal myoclonus syndrome (NMS) J. Neural Transm. Gen. Sect. 1995;99:187–193. PubMed

Tenke C.E., Kayser J. Generator localization by current source density (CSD): implications of volume conduction and field closure at intracranial and scalp resolutions. Clin. Neurophysiol. 2012;123:2328–2345. PubMed PMC

Tillman C.M., Wiens S. Behavioral and ERP indices of response conflict in Stroop and flanker tasks. Psychophysiology. 2011;48:1405–1411. PubMed

Trenkwalder C., Paulus W. Restless legs syndrome: pathophysiology, clinical presentation and management. Nat. Rev. Neurol. 2010;6:337–346. PubMed

Trenkwalder C., Paulus W., Walters A.S. 2005. The Restless Legs Syndrome 4, 465–475. PubMed

Turjanski N., Lees A.J., Brooks D.J. Striatal dopaminergic function in restless legs syndrome: 18F-dopa and 11C-raclopride PET studies. Neurology. 1999;52:932–937. PubMed

Twomey D.M., Murphy P.R., Kelly S.P., O'Connell R.G. The classic P300 encodes a build-to-threshold decision variable. Eur. J. Neurosci. 2015;42:1636–1643. PubMed

Unrath A., Juengling F.D., Schork M., Kassubek J. Cortical grey matter alterations in idiopathic restless legs syndrome: an optimized voxel-based morphometry study. Mov. Disord. Off. J. Mov. Disord. Soc. 2007;22:1751–1756. PubMed

Verleger R., Jaskowski P., Wascher E. 2005. Evidence for an Integrative Role of P3b in Linking Reaction to Perception.

Vidal F., Burle B., Spieser L., Carbonnell L., Meckler C., Casini L., Hasbroucq T. Linking EEG signals, brain functions and mental operations: advantages of the Laplacian transformation. Int. J. Psychophysiol. 2015;97:221–232. http://dx.doi.org/10.1016/j.ijpsycho.2015.04.022 On the benefits of using surface Laplacian (current source density) methodology in electrophysiology. PubMed DOI

Videnovic A., Golombek D. Circadian and sleep disorders in Parkinson's disease. Exp. Neurol. 2013;243:45–56. http://dx.doi.org/10.1016/j.expneurol.2012.08.018 Circadian rhythms and sleep disorders. PubMed DOI PMC

Wagenmakers E.-J. A practical solution to the pervasive problems ofp values. Psychon. Bull. Rev. 2007;14:779–804. PubMed

Walters A.S., LeBrocq C., Dhar A., Hening W., Rosen R., Allen R.P., Trenkwalder C., International Restless Legs Syndrome Study Group Validation of the international restless legs syndrome study group rating scale for restless legs syndrome. Sleep Med. 2003;4:121–132. PubMed

Wilkes M.M., Babaknia A., Hoff J.D., Quigley M.E., Fraus P.F., Yen S.S.C. Circadian rhythm in circulating concentration of dihydroxyphenylacetic acid in normal women. J. Clin. Endocrinol. Metab. 1981;52:608–611. PubMed

Willemssen R., Müller T., Schwarz M., Falkenstein M., Beste C. Response monitoring in de novo patients with Parkinson's disease. PLoS One. 2009;4 PubMed PMC

Willemssen R., Falkenstein M., Schwarz M., Müller T., Beste C. Effects of aging, Parkinson's disease, and dopaminergic medication on response selection and control. Neurobiol. Aging. 2011;32:327–335. PubMed

Winkelman J.W., Redline S., Baldwin C.M., Resnick H.E., Newman A.B., Gottlieb D.J. Polysomnographic and health-related quality of life correlates of restless legs syndrome in the sleep heart health study. Sleep. 2009;32:772–778. PubMed PMC

Winkelman J.W., Schoerning L., Platt S., Jensen J.E. Restless legs syndrome and central nervous system gamma-aminobutyric acid: preliminary associations with periodic limb movements in sleep and restless leg syndrome symptom severity. Sleep Med. 2014;15:1225–1230. PubMed

Wylie S.A., Stout J.C., Bashore T.R. Activation of conflicting responses in Parkinson's disease: evidence for degrading and facilitating effects on response time. Neuropsychologia. 2005;43:1033–1043. PubMed

Wylie S.A., van den Wildenberg W.P.M., Ridderinkhof K.R., Bashore T.R., Powell V.D., Manning C.A., Wooten G.F. The effect of Parkinson's disease on interference control during action selection. Neuropsychologia. 2009;47:145–157. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...