Neurophysiological mechanisms of circadian cognitive control in RLS patients - an EEG source localization study
Jazyk angličtina Země Nizozemsko Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28664035
PubMed Central
PMC5480014
DOI
10.1016/j.nicl.2017.06.018
PII: S2213-1582(17)30149-3
Knihovny.cz E-zdroje
- Klíčová slova
- Attentional selection, Circadian variation, Cognition, EEG, Flanker interference effect, Restless legs syndrome (RLS),
- MeSH
- cirkadiánní rytmus fyziologie MeSH
- dospělí MeSH
- elektroencefalografie MeSH
- kognice fyziologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- pozornost fyziologie MeSH
- senioři MeSH
- syndrom neklidných nohou patofyziologie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The circadian variation of sensory and motor symptoms with increasing severity in the evening and at night is a key diagnostic feature/symptom of the restless legs syndrome (RLS). Even though many neurological diseases have shown a strong nexus between motor and cognitive symptoms, it has remained unclear whether cognitive performance of RLS patients declines in the evening and which neurophysiological mechanisms are affected by the circadian variation. In the current study, we examined daytime effects (morning vs. evening) on cognitive performance in RLS patients (n = 33) compared to healthy controls (n = 29) by analyzing flanker interference effects in combination with EEG and source localization techniques. RLS patients showed larger flanker interference effects in the evening than in the morning (p = .023), while healthy controls did not display a comparable circadian variation. In line with this, the neurophysiological data showed smaller N1 amplitudes in RLS patients compared to controls in the interfering task condition in the evening (p = .042), but not in the morning. The results demonstrate diurnal cognitive changes in RLS patients with intensified impairments in the evening. It seems that not all dopamine-regulated cognitive processes are altered in RLS and thus show daytime-dependent impairments. Instead, the daytime-related cognitive impairment emerges from attentional selection processes within the extra-striate visual cortex, but not from later cognitive processes such as conflict monitoring and response selection.
Zobrazit více v PubMed
Albin R.L., Young A.B., Penney J.B. The functional anatomy of disorders of the basal ganglia. Trends Neurosci. 1995;18:63–64. PubMed
Allen R.P., Earley C.J. Restless legs syndrome: a review of clinical and pathophysiologic features. J. Clin. Neurophysiol. Off. Publ. Am. Electroencephalogr. Soc. 2001;18:128–147. PubMed
Allen R.P., Walters A.S., Montplaisir J., Hening W., Myers A., Bell T.J., Ferini-Strambi L. Restless legs syndrome prevalence and impact: REST general population study. Arch. Intern. Med. 2005;165:1286–1292. PubMed
Allen R.P., Connor J.R., Hyland K., Earley C.J. Abnormally increased CSF 3-Ortho-methyldopa (3-OMD) in untreated restless legs syndrome (RLS) patients indicates more severe disease and possibly abnormally increased dopamine synthesis. Sleep Med. 2009;10:123–128. PubMed PMC
Allen R.P., Barker P.B., Horská A., Earley C.J. Thalamic glutamate/glutamine in restless legs syndrome: increased and related to disturbed sleep. Neurology. 2013;80:2028–2034. PubMed PMC
Allen R.P., Picchietti D.L., Garcia-Borreguero D., Ondo W.G., Walters A.S., Winkelman J.W., Zucconi M., Ferri R., Trenkwalder C., Lee H.B., International Restless Legs Syndrome Study Group Restless legs syndrome/Willis-Ekbom disease diagnostic criteria: updated International Restless Legs Syndrome Study Group (IRLSSG) consensus criteria--history, rationale, description, and significance. Sleep Med. 2014;15:860–873. PubMed
Barceló F., Suwazono S., Knight R.T. Prefrontal modulation of visual processing in humans. Nat. Neurosci. 2000;3:399–403. PubMed
Barrière G., Cazalets J.R., Bioulac B., Tison F., Ghorayeb I. The restless legs syndrome. Prog. Neurobiol. 2005;77:139–165. PubMed
Beck A.T., Ward C.H., Mendelson M., Mock J., Erbaugh J. An inventory for measuring depression. Arch. Gen. Psychiatry. 1961;4:561–571. PubMed
Benton A.L. A visual retention test for clinical use. Arch. Neurol. Psychiatr. 1945;54:212–216. PubMed
Beste C., Saft C., Yordanova J., Andrich J., Gold R., Falkenstein M., Kolev V. Functional compensation or pathology in cortico-subcortical interactions in preclinical Huntington's disease? Neuropsychologia. 2007;45:2922–2930. PubMed
Beste C., Saft C., Andrich J., Gold R., Falkenstein M. Stimulus-response compatibility in Huntington's disease: a cognitive-neurophysiological analysis. J. Neurophysiol. 2008;99:1213–1223. PubMed
Beste C., Saft C., Konrad C., Andrich J., Habbel A., Schepers I., Jansen A., Pfleiderer B., Falkenstein M. Levels of error processing in Huntington's disease: a combined study using event-related potentials and voxel-based morphometry. Hum. Brain Mapp. 2008;29:121–130. PubMed PMC
Beste C., Baune B.T., Falkenstein M., Konrad C. Variations in the TNF-α Gene (TNF-α-308G → a) affect attention and action selection mechanisms in a dissociated fashion. J. Neurophysiol. 2010;104:2523–2531. PubMed
Beste C., Mückschel M., Elben S., Hartmann C.J., McIntyre C.C., Saft C., Vesper J., Schnitzler A., Wojtecki L. Behavioral and neurophysiological evidence for the enhancement of cognitive control under dorsal pallidal deep brain stimulation in Huntington's disease. Brain Struct. Funct. 2015;220:2441–2448. PubMed
Beste C., Mückschel M., Rosales R., Domingo A., Lee L., Ng A., Klein C., Münchau A. Striosomal dysfunction affects behavioral adaptation but not impulsivity-evidence from X-linked dystonia-parkinsonism. Mov. Disord. Off. J. Mov. Disord. Soc. 2017;32:576–584. PubMed
Blatter K., Cajochen C. Circadian rhythms in cognitive performance: methodological constraints, protocols, theoretical underpinnings. Physiol. Behav. 2007;90:196–208. http://dx.doi.org/10.1016/j.physbeh.2006.09.009 Includes a Special Section on Chronobiology Aspects of the Sleep--Wake Cycle and Thermoreregulation. PubMed DOI
Botvinick M.M., Braver T.S., Barch D.M., Carter C.S., Cohen J.D. Conflict monitoring and cognitive control. Psychol. Rev. 2001;108:624–652. PubMed
Brickenkamp R., Schmidt-Atzert L., Liepmann D. Hogrefe; Göttingen: 2010. Test d2-Revision.
Cagigas X.E., Vincent Filoteo J., Stricker J.L., Rilling L.M., Friedrich F.J. Flanker compatibility effects in patients with Parkinson's disease: impact of target onset delay and trial-by-trial stimulus variation. Brain Cogn. 2007;63:247–259. PubMed PMC
Cervenka S., Pålhagen S.E., Comley R.A., Panagiotidis G., Cselényi Z., Matthews J.C., Lai R.Y., Halldin C., Farde L. Support for dopaminergic hypoactivity in restless legs syndrome: a PET study on D2-receptor binding. Brain J. Neurol. 2006;129:2017–2028. PubMed
Chmielewski W.X., Mückschel M., Roessner V., Beste C. Expectancy effects during response selection modulate attentional selection and inhibitory control networks. Behav. Brain Res. 2014;274:53–61. PubMed
Choi J.W., Ko D., Lee G.-T., Jung K.-Y., Kim K.H. Reduced neural synchrony in patients with restless legs syndrome during a visual oddball task. PLoS One. 2012;7 PubMed PMC
Chudasama Y., Robbins T.W. Functions of frontostriatal systems in cognition: comparative neuropsychopharmacological studies in rats, monkeys and humans. Biol. Psychol. 2006;73:19–38. PubMed
Clemens S., Rye D., Hochman S. Restless legs syndrome: revisiting the dopamine hypothesis from the spinal cord perspective. Neurology. 2006;67:125–130. PubMed
Cohen M.X. MIT Press; 2014. Analyzing Neural Time Series Data: Theory and Practice.
Desimone R. Visual attention mediated by biased competition in extrastriate visual cortex. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 1998;353:1245–1255. PubMed PMC
Dijk D.-J., Duffy J.F., Czeisler C.A. Circadian and sleep/wake dependent aspects of subjective alertness and cognitive performance. J. Sleep Res. 1992;1:112–117. PubMed
Dippel G., Beste C. A causal role of the right inferior frontal cortex in implementing strategies for multi-component behaviour. Nat. Commun. 2015;6:6587. PubMed
Domínguez-López S., Howell R.D., López-Canúl M.G., Leyton M., Gobbi G. Electrophysiological characterization of dopamine neuronal activity in the ventral tegmental area across the light-dark cycle. Synap. N. Y. 2014;68:454–467. PubMed
Earley C.J., Hyland K., Allen R.P. Circadian changes in CSF dopaminergic measures in restless legs syndrome. Sleep Med. 2006;7:263–268. PubMed
Earley C.J., Kuwabara H., Wong D.F., Gamaldo C., Salas R.E., Brašić J.R., Ravert H.T., Dannals R.F., Allen R.P. Increased synaptic dopamine in the putamen in restless legs syndrome. Sleep. 2013;36:51–57. PubMed PMC
Eimer M., Hommel B., Prinz W. S-R compatibility and response selection. Acta Psychol. (Amst.) 1995;90:301–313. http://dx.doi.org/10.1016/0001-6918(95)00022-M Discrete and Continuous Information Processing. DOI
Eriksen B.A., Eriksen C.W. Effects of noise letters upon the identification of a target letter in a nonsearch task. Percept. Psychophys. 1974;16:143–149.
Falkenstein M., Willemssen R., Hohnsbein J., Hielscher H. Effects of stimulus-response compatibility in Parkinson's disease: a psychophysiological analysis. J. Neural Transm. 2006;113:1449–1462. PubMed
Folstein J.R., Van Petten C. Influence of cognitive control and mismatch on the N2 component of the ERP: a review. Psychophysiology. 2008;45:152–170. PubMed PMC
Fuchs M., Kastner J., Wagner M., Hawes S., Ebersole J.S. A standardized boundary element method volume conductor model. Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol. 2002;113:702–712. PubMed
Fulda S., Beitinger M.E., Reppermund S., Winkelmann J., Wetter T.C. Short-term attention and verbal fluency is decreased in restless legs syndrome patients. Mov. Disord. Off. J. Mov. Disord. Soc. 2010;25:2641–2648. PubMed
Fulda S., Szesny N., Ising M., Heck A., Grübl A., Lieb R., Reppermund S. Further evidence for executive dysfunction in subjects with RLS from a non-clinical sample. Sleep Med. 2011;12:1003–1007. PubMed
Garcia-Borreguero D. Time to REST: epidemiology and burden. Eur. J. Neurol. 2006;13(Suppl. 3):15–20. PubMed
Garcia-Borreguero D., Larrosa O., Granizo J.J., de la Llave Y., Hening W.A. Circadian variation in neuroendocrine response to L-dopa in patients with restless legs syndrome. Sleep. 2004;27:669–673. PubMed
Garcia-Borreguero D., Serrano C., Larrosa O., Granizo J.J. Circadian effects of dopaminergic treatment in restless legs syndrome. Sleep Med. 2004;5:413–420. PubMed
Haber S.N. Corticostriatal circuitry. Dialogues Clin. Neurosci. 2016;18:7–21. PubMed PMC
Helmstaedter C., Lendt M., Lux S. Hogrefe Verl. Für Psychol; Gött: 2001. Verbaler Lern- und Merkfähigkeitstest.
Hening W., Allen R., Earley C., Kushida C., Picchietti D., Silber M. The treatment of restless legs syndrome and periodic limb movement disorder. An American Academy of Sleep Medicine Review. Sleep. 1999;22:970–999. PubMed
Herrmann C.S., Knight R.T. Mechanisms of human attention: event-related potentials and oscillations. Neurosci. Biobehav. Rev. 2001;25:465–476. PubMed
Hillyard S.A., Anllo-Vento L. Event-related brain potentials in the study of visual selective attention. Proc. Natl. Acad. Sci. U. S. A. 1998;95:781–787. PubMed PMC
Horne J.A., Ostberg O. A self-assessment questionnaire to determine morningness-eveningness in human circadian rhythms. Int. J. Chronobiol. 1976;4:97–110. PubMed
Jensen A.R., Rohwer W.D., Jr. The stroop color-word test: a review. Acta Psychol. 1966;25:36–93. PubMed
Jung K.-Y., Koo Y.-S., Kim B.-J., Ko D., Lee G.-T., Kim K.H., Im C.H. Electrophysiologic disturbances during daytime in patients with restless legs syndrome: further evidence of cognitive dysfunction? Sleep Med. 2011;12:416–421. PubMed
Kähkönen S., Ahveninen J., Pekkonen E., Kaakkola S., Huttunen J., Ilmoniemi R.J., Jääskeläinen I.P. Dopamine modulates involuntary attention shifting and reorienting: an electromagnetic study. Clin. Neurophysiol. 2002;113:1894–1902. PubMed
Kastner S., Weerd P.D., Desimone R., Ungerleider L.G. Mechanisms of directed attention in the human extrastriate cortex as revealed by functional MRI. Science. 1998;282:108–111. PubMed
Kawano Y., Kawasaki T., Kawazoe N., Abe I., Uezono K., Ueno M., Fukiyama K., Omae T. Circadian variations of urinary dopamine, norepinephrine, epinephrine and sodium in normotensive and hypertensive subjects. Nephron. 1990;55:277–282. PubMed
Knight R.T. Distributed cortical network for visual attention. J. Cogn. Neurosci. 1997;9:75–91. PubMed
Kok A. On the utility of P3 amplitude as a measure of processing capacity. Psychophysiology. 2001;38:557–577. PubMed
Kopp B., Rist F., Mattler U. N200 in the flanker task as a neurobehavioral tool for investigating executive control. Psychophysiology. 1996;33:282–294. PubMed
Luck S.J., Heinze H.J., Mangun G.R., Hillyard S.A. Visual event-related potentials index focused attention within bilateral stimulus arrays. II. Functional dissociation of P1 and N1 components. Electroencephalogr. Clin. Neurophysiol. 1990;75:528–542. PubMed
Luck S.J., Woodman G.F., Vogel E.K. Event-related potential studies of attention. Trends Cogn. Sci. 2000;4(11):432–440. PubMed
Masson M.E.J. A tutorial on a practical Bayesian alternative to null-hypothesis significance testing. Behav. Res. Methods. 2011;43:679–690. PubMed
Mazziotta J., Toga A., Evans A., Fox P., Lancaster J., Zilles K., Woods R., Paus T., Simpson G., Pike B., Holmes C., Collins L., Thompson P., MacDonald D., Iacoboni M., Schormann T., Amunts K., Palomero-Gallagher N., Geyer S., Parsons L., Narr K., Kabani N., Le Goualher G., Boomsma D., Cannon T., Kawashima R., Mazoyer B. A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM) Philos. Trans. R. Soc. Lond. Ser. B. 2001;356:1293–1322. PubMed PMC
Michaud M., Soucy J.-P., Chabli A., Lavigne G., Montplaisir J. SPECT imaging of striatal pre- and postsynaptic dopaminergic status in restless legs syndrome with periodic leg movements in sleep. J. Neurol. 2002;249:164–170. PubMed
Moore H., Fadel J., Sarter M., Bruno J.P. Role of accumbens and cortical dopamine receptors in the regulation of cortical acetylcholine release. Neuroscience. 1999;88:811–822. PubMed
Mückschel M., Stock A.-K., Beste C. Psychophysiological mechanisms of interindividual differences in goal activation modes during action cascading. Cereb. Cortex N. Y. 2014;1991(24):2120–2129. PubMed
Müller T., Benz S., Przuntek H. Choice reaction time after levodopa challenge in parkinsonian patients. J. Neurol. Sci. 2000;181:98–103. PubMed
Müller T., Benz S., Börnke C. Delay of simple reaction time after levodopa intake. Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol. 2001;112:2133–2137. PubMed
Müller T., Benz S., Przuntek H. Apomorphine delays simple reaction time in Parkinsonian patients. Parkinsonism Relat. Disord. 2002;8:357–360. PubMed
Nieoullon A. Dopamine and the regulation of cognition and attention. Prog. Neurobiol. 2002;67:53–83. PubMed
Nunez P.L., Pilgreen K.L. The spline-Laplacian in clinical neurophysiology: a method to improve EEG spatial resolution. J. Clin. Neurophysiol. Off. Publ. Am. Electroencephalogr. Soc. 1991;8:397–413. PubMed
Pascual-Marqui R.D. Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find. Exp. Clin. Pharmacol. 2002;24(Suppl D):5–12. PubMed
Pearson V.E., Allen R.P., Dean T., Gamaldo C.E., Lesage S.R., Earley C.J. Cognitive deficits associated with restless legs syndrome (RLS) Sleep Med. 2006;7:25–30. PubMed
Penner I.K., Raselli C., Stöcklin M., Opwis K., Kappos L., Calabrese P. The Fatigue Scale for Motor and Cognitive Functions (FSMC): validation of a new instrument to assess multiple sclerosis-related fatigue. Mult. Scler. Houndmills Basingstoke Engl. 2009;15:1509–1517. PubMed
Perrin F., Pernier J., Bertrand O., Echallier J.F. Spherical splines for scalp potential and current density mapping. Electroencephalogr. Clin. Neurophysiol. 1989;72:184–187. PubMed
Polich J. Updating P300: an integrative theory of P3a and P3b. Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol. 2007;118:2128–2148. PubMed PMC
Praamstra P., Stegeman D.F., Cools A.R., Horstink M.W.I.M. Reliance on external cues for movement initiation in Parkinson's disease. Evidence from movement-related potentials. Brain. 1998;121:167–177. PubMed
Praamstra P., Plat E.M., Meyer A.S., Horstink M.W.I.M. Motor cortex activation in Parkinson's disease: dissociation of electrocortical and peripheral measures of response generation. Mov. Disord. 1999;14:790–799. PubMed
Raftery A.E. Bayesian model selection in social research. Sociol. Methodol. 1995;25:111–163.
Ridderinkhof K.R., van der Molen M.W., Bashore T.R. Limits on the application of additive factors logic: violations of stage robustness suggest a dual-process architecture to explain flanker effects on target processing. Acta Psychol. (Amst.) 1995;90:29–48. http://dx.doi.org/10.1016/0001-6918(95)00031-O Discrete and Continuous Information Processing. DOI
Russell V., de Villiers A., Sagvolden T., Lamm M., Taljaard J. Altered dopaminergic function in the prefrontal cortex, nucleus accumbens and caudate-putamen of an animal model of attention-deficit hyperactivity disorder--the spontaneously hypertensive rat. Brain Res. 1995;676:343–351. PubMed
Sagvolden T. Behavioral validation of the spontaneously hypertensive rat (SHR) as an animal model of attention-deficit/hyperactivity disorder (AD/HD) Neurosci. Biobehav. Rev. 2000;24:31–39. PubMed
Sarter M., Gehring W.J., Kozak R. More attention must be paid: the neurobiology of attentional effort. Brain Res. Rev. 2006;51:145–160. PubMed
Schneider D., Beste C., Wascher E. Attentional capture by irrelevant transients leads to perceptual errors in a competitive change detection task. Front. Psychol. 2012;3:164. PubMed PMC
Schultz W. Predictive reward signal of dopamine neurons. J. Neurophysiol. 1998;80:1–27. PubMed
Sekihara K., Sahani M., Nagarajan S.S. Localization bias and spatial resolution of adaptive and non-adaptive spatial filters for MEG source reconstruction. NeuroImage. 2005;25:1056–1067. PubMed PMC
Shine J.M., Halliday G.M., Naismith S.L., Lewis S.J.G. Visual misperceptions and hallucinations in Parkinson's disease: dysfunction of attentional control networks? Mov. Disord. 2011;26:2154–2159. PubMed
Silkis I. A hypothetical role of cortico-basal ganglia-thalamocortical loops in visual processing. Biosystems. 2007;89:227–235. PubMed
Staedt J., Stoppe G., Kögler A., Munz D., Riemann H., Emrich D., Rüther E. Dopamine D2 receptor alteration in patients with periodic movements in sleep (nocturnal myoclonus) J. Neural Transm. Gen. Sect. 1993;93:71–74. PubMed
Staedt J., Stoppe G., Kögler A., Riemann H., Hajak G., Munz D.L., Emrich D., Rüther E. Nocturnal myoclonus syndrome (periodic movements in sleep) related to central dopamine D2-receptor alteration. Eur. Arch. Psychiatry Clin. Neurosci. 1995;245:8–10. PubMed
Staedt J., Stoppe G., Kögler A., Riemann H., Hajak G., Munz D.L., Emrich D., Rüther E. Single photon emission tomography (SPET) imaging of dopamine D2 receptors in the course of dopamine replacement therapy in patients with nocturnal myoclonus syndrome (NMS) J. Neural Transm. Gen. Sect. 1995;99:187–193. PubMed
Tenke C.E., Kayser J. Generator localization by current source density (CSD): implications of volume conduction and field closure at intracranial and scalp resolutions. Clin. Neurophysiol. 2012;123:2328–2345. PubMed PMC
Tillman C.M., Wiens S. Behavioral and ERP indices of response conflict in Stroop and flanker tasks. Psychophysiology. 2011;48:1405–1411. PubMed
Trenkwalder C., Paulus W. Restless legs syndrome: pathophysiology, clinical presentation and management. Nat. Rev. Neurol. 2010;6:337–346. PubMed
Trenkwalder C., Paulus W., Walters A.S. 2005. The Restless Legs Syndrome 4, 465–475. PubMed
Turjanski N., Lees A.J., Brooks D.J. Striatal dopaminergic function in restless legs syndrome: 18F-dopa and 11C-raclopride PET studies. Neurology. 1999;52:932–937. PubMed
Twomey D.M., Murphy P.R., Kelly S.P., O'Connell R.G. The classic P300 encodes a build-to-threshold decision variable. Eur. J. Neurosci. 2015;42:1636–1643. PubMed
Unrath A., Juengling F.D., Schork M., Kassubek J. Cortical grey matter alterations in idiopathic restless legs syndrome: an optimized voxel-based morphometry study. Mov. Disord. Off. J. Mov. Disord. Soc. 2007;22:1751–1756. PubMed
Verleger R., Jaskowski P., Wascher E. 2005. Evidence for an Integrative Role of P3b in Linking Reaction to Perception.
Vidal F., Burle B., Spieser L., Carbonnell L., Meckler C., Casini L., Hasbroucq T. Linking EEG signals, brain functions and mental operations: advantages of the Laplacian transformation. Int. J. Psychophysiol. 2015;97:221–232. http://dx.doi.org/10.1016/j.ijpsycho.2015.04.022 On the benefits of using surface Laplacian (current source density) methodology in electrophysiology. PubMed DOI
Videnovic A., Golombek D. Circadian and sleep disorders in Parkinson's disease. Exp. Neurol. 2013;243:45–56. http://dx.doi.org/10.1016/j.expneurol.2012.08.018 Circadian rhythms and sleep disorders. PubMed DOI PMC
Wagenmakers E.-J. A practical solution to the pervasive problems ofp values. Psychon. Bull. Rev. 2007;14:779–804. PubMed
Walters A.S., LeBrocq C., Dhar A., Hening W., Rosen R., Allen R.P., Trenkwalder C., International Restless Legs Syndrome Study Group Validation of the international restless legs syndrome study group rating scale for restless legs syndrome. Sleep Med. 2003;4:121–132. PubMed
Wilkes M.M., Babaknia A., Hoff J.D., Quigley M.E., Fraus P.F., Yen S.S.C. Circadian rhythm in circulating concentration of dihydroxyphenylacetic acid in normal women. J. Clin. Endocrinol. Metab. 1981;52:608–611. PubMed
Willemssen R., Müller T., Schwarz M., Falkenstein M., Beste C. Response monitoring in de novo patients with Parkinson's disease. PLoS One. 2009;4 PubMed PMC
Willemssen R., Falkenstein M., Schwarz M., Müller T., Beste C. Effects of aging, Parkinson's disease, and dopaminergic medication on response selection and control. Neurobiol. Aging. 2011;32:327–335. PubMed
Winkelman J.W., Redline S., Baldwin C.M., Resnick H.E., Newman A.B., Gottlieb D.J. Polysomnographic and health-related quality of life correlates of restless legs syndrome in the sleep heart health study. Sleep. 2009;32:772–778. PubMed PMC
Winkelman J.W., Schoerning L., Platt S., Jensen J.E. Restless legs syndrome and central nervous system gamma-aminobutyric acid: preliminary associations with periodic limb movements in sleep and restless leg syndrome symptom severity. Sleep Med. 2014;15:1225–1230. PubMed
Wylie S.A., Stout J.C., Bashore T.R. Activation of conflicting responses in Parkinson's disease: evidence for degrading and facilitating effects on response time. Neuropsychologia. 2005;43:1033–1043. PubMed
Wylie S.A., van den Wildenberg W.P.M., Ridderinkhof K.R., Bashore T.R., Powell V.D., Manning C.A., Wooten G.F. The effect of Parkinson's disease on interference control during action selection. Neuropsychologia. 2009;47:145–157. PubMed PMC