Eu@C72: Computed Comparable Populations of Two Non-IPR Isomers
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
28672819
PubMed Central
PMC6152253
DOI
10.3390/molecules22071053
PII: molecules22071053
Knihovny.cz E-zdroje
- Klíčová slova
- metallofullerenes, non-IPR fullerenes, relative populations of isomers,
- MeSH
- fullereny chemie MeSH
- isomerie MeSH
- molekulární modely MeSH
- teplota MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- fullereny MeSH
Relative concentrations of six isomeric Eu@C 72 -one based on the IPR C 72 cage (i.e., obeying the isolated-pentagon rule, IPR), two cages with a pentagon-pentagon junction (symmetries C 2 and C 2 v ), a cage with one heptagon, a cage with two heptagons, and a cage with two pentagon-pentagon fusions-are DFT computed using the Gibbs energy in a broad temperature interval. It is shown that the two non-IPR isomers with one pentagon-pentagon junction prevail at any relevant temperature and exhibit comparable populations. The IPR-satisfying structure is disfavored by both energy and entropy.
Department of Chemistry and Biochemistry University of Arizona Tucson AZ 85721 0041 USA
Fukui Institute for Fundamental Chemistry Kyoto University Kyoto 606 8103 Japan
Zobrazit více v PubMed
Fowler P.W., Manolopoulos D.E. Magic Numbers and Stable structures for fullerenes, fullerides, and fullerenium ions. Nature. 1992;355:428–430. doi: 10.1038/355428a0. DOI
Tan Y.-Z., Xie S.-Y., Huang R.-B., Zheng L.-S. The stabilization of fused-pentagon fullerene molecules. Nat. Chem. 2009;1:450–460. doi: 10.1038/nchem.329. PubMed DOI
Popov A.A., Yang S., Dunsch L. Endohedral fullerenes. Chem. Rev. 2013;113:5989–6113. doi: 10.1021/cr300297r. PubMed DOI
Diener M.D., Alford J.M. Isolation and properties of small-bandgap fullerenes. Nature. 1998;393:668–671.
Boltalina O.V., Ioffe I.N., Sidorov L.N., Seifert G., Vietze K. Ionization energy of fullerenes. J. Am. Chem. Soc. 2000;122:9745–9749. doi: 10.1021/ja000734b. DOI
Wan T.S.M., Zhang H.W., Nakane T., Xu Z.D., Inakuma M., Shinohara H., Kobayashi K., Nagase S. Production, isolation, and electronic properties of missing fullerenes: Ca@C72 and Ca@C74. J. Am. Chem. Soc. 1998;120:6806–6807. doi: 10.1021/ja972478h. DOI
Kato H., Taninaka A., Sugai T., Shinohara H. Structure of a missing-caged metallofullerene: La2@C72. J. Am. Chem. Soc. 2003;125:7782–7783. doi: 10.1021/ja0353255. PubMed DOI
Wakahara T., Nikawa H., Kikuchi T., Nakahodo T., Rahman G.M.A., Tsuchiya T., Maeda Y., Akasaka T., Yoza K., Horn E., et al. La@C72 having a non-IPR carbon cage. J. Am. Chem. Soc. 2006;128:14228–14229. doi: 10.1021/ja064751y. PubMed DOI
Slanina Z., Ishimura K., Kobayashi K., Nagase S. C72 isomers: The IPR-satisfying cage is disfavored by both energy and entropy. Chem. Phys. Lett. 2004;384:114–118. doi: 10.1016/j.cplett.2003.11.097. DOI
Kobayashi K., Nagase S., Yoshida M., Ōsawa E. Endohedral metallofullerenes. Are the isolated pentagon rule and fullerene structures always satisfied? J. Am. Chem. Soc. 1997;119:12693–12694. doi: 10.1021/ja9733088. DOI
Slanina Z., Kobayashi K., Nagase S. Ca@C72 IPR and non-IPR structures: Computed temperature development of their relative concentrations. Chem. Phys. 2003;372:810–814. doi: 10.1016/S0009-2614(03)00519-0. DOI
Slanina Z., Lee S.-L., Kobayashi K., Nagase S. Si60 clusters: AM1 computed Ih/C2v relative populations. J. Mol. Struct. 1994;312:175–178. doi: 10.1016/S0166-1280(09)80030-4. DOI
Slanina Z., Zhao X., Deota P., Ōsawa E. Relative stabilities of C92 IPR fullerenes. J. Mol. Model. 2000;6:312–317. doi: 10.1007/PL00010732. DOI
Slanina Z., Uhlík F., Zhao X., Ōsawa E. Enthalpy-entropy interplay for C36 cages: B3LYP/6-31G* calculations. J. Chem. Phys. 2000;113:4933–4937. doi: 10.1063/1.1288368. DOI
Slanina Z., Lee S.-L., Uhlík F., Adamowicz L., Nagase S. Computing relative stabilities of metallofullerenes by Gibbs energy treatments. Theor. Chem. Acc. 2007;117:315–322. doi: 10.1007/s00214-006-0150-0. DOI
Slanina Z., Uhlík F., Lee S.-L., Adamowicz L., Akasaka T., Nagase S. Calculations of metallofullerene yields. J. Comput. Theor. Nanosci. 2011;8:2233–2239. doi: 10.1166/jctn.2011.1950. DOI
Bucher K., Epple L., Mende J., Mehring M., Jansen M. Synthesis, isolation and characterization of new endohedral fullerenes M@C72 (M = Eu, Sr, Yb) Phys. Stat. Solid. 2006;243:3025–3027. doi: 10.1002/pssb.200669110. DOI
Bucher K., Mende J., Mehring M., Jansen M. Isolation and spectroscopic characterization of Eu@C72. Fulleren. Nanotub. Carbon Nanostruct. 2007;15:29–42. doi: 10.1080/15363830600811961. DOI
Slanina Z., Zhao X., Uhlík F., Ōsawa E. Non-IPR fullerenes: C36 and C72. In: Kuzmany H., Fink J., Mehring M., Roth S., editors. Electronic Properties of Novel Materials—Science and Technology of Molecular Nanostructures. AIP; Melville, NY, USA: 1999. pp. 179–182.
Slanina Z., Zhao X., Deota P., Ōsawa E. Calculations of higher fullerenes and quasi-fullerenes. In: Kadish K.M., Ruoff R.S., editors. Fullerenes: Chemistry, Physics, and Technology. John Wiley; New York, NY, USA: 2000. pp. 283–330.
Slanina Z., Zhao X., Grabuleda X., Ozawa M., Uhlík F., Ivanov P. M., Kobayashi K., Nagase S. Mg@C72: MNDO/d evaluation of the isomeric composition. J. Mol. Graph. Model. 2001;19:252–255. doi: 10.1016/S1093-3263(00)00092-9. PubMed DOI
Slanina Z., Uhlík F., Adamowicz L., Kobayashi K., Nagase S. Electronic excited states and stabilities of fullerenes isomers of C78 and Mg@C72. Int. J. Quantum Chem. 2004;100:610–616. doi: 10.1002/qua.10818. DOI
Slanina Z., Kobayashi K., Nagase S. Ca@C74 isomers: Relative concentrations at higher temperatures. Chem. Phys. 2004;301:153–157. doi: 10.1016/j.chemphys.2004.03.010. PubMed DOI
Slanina Z., Adamowicz L., Kobayashi K., Nagase S. Gibbs energy-based treatment of metallofullerenes: Ca@C72, Ca@C74, Ca@C82, and La@C82. Mol. Simul. 2005;31:71–77. doi: 10.1080/08927020412331308458. DOI
Slanina Z., Chen Z., Schleyer P.V.R., Uhlík F., Lu X., Nagase S. La2@C72 and Sc2@C72: Computational characterizations. J. Phys. Chem. A. 2006;110:2231–2234. doi: 10.1021/jp055894u. PubMed DOI
Lu X., Nikawa H., Nakahodo T., Tsuchiya T., Ishitsuka M.O., Maeda Y., Akasaka T., Toki M., Sawa H., Slanina Z., et al. A chemical understanding of a non-IPR metallofullerene: Stabilization of encaged metals on fused-pentagon bonds in La2@C72. J. Am. Chem. Soc. 2008;130:9129–9136. doi: 10.1021/ja8019577. PubMed DOI
Lu X., Nikawa H., Tsuchiya T., Maeda Y., Ishitsuka M.O., Akasaka T., Toki M., Sawa H., Slanina Z., Mizorogi N., et al. Bis-carbene adducts of non-IPR La2@C72: Localization of high reactivity around fused pentagons and electrochemical properties. Angew. Chem. Int. Ed. 2008;47:8642–8645. doi: 10.1002/anie.200803529. PubMed DOI
Feng Y., Wang T., Wu J., Feng L., Xiang J., Ma Y., Zhang Z., Jiang L., Shua C., Wang C. Structural and electronic studies of metal carbide clusterfullerene Sc2C2@Cs-C72. Nanoscale. 2013;5:6704–6707. doi: 10.1039/c3nr01739g. PubMed DOI
Yamada M., Muto Y., Kurihara H., Slanina Z., Suzuki M., Maeda Y., Rubin Y., Olmstead M.M., Balch A.L., Nagase S., et al. Regioselective cage opening of La2@D2(10611)-C72 with 5,6-Diphenyl-3- (2-pyridyl)-1,2,4-triazine. Angew. Chem. Int. Ed. 2015;54:2232–2235. doi: 10.1002/anie.201410012. PubMed DOI
Gan L.-H., Wu R., Tian J.-L., Fowler P.W. An atlas of endohedral Sc2S cluster fullerenes. Phys. Chem. Chem. Phys. 2017;19:419–425. doi: 10.1039/C6CP07370K. PubMed DOI
Becke A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993;98:5648–5652. doi: 10.1063/1.464913. DOI
Lee C., Yang W., Parr R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B. 1988;37:785–789. doi: 10.1103/PhysRevB.37.785. PubMed DOI
Krishnan R., Binkley J.S., Seeger R., Pople J.A. Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys. 1980;72:650–654. doi: 10.1063/1.438955. DOI
Cao X.Y., Dolg M. Segmented contraction scheme for small-core lanthanide pseudopotential basis sets. J. Mol. Struct. 2002;581:139–147. doi: 10.1016/S0166-1280(01)00751-5. DOI
Casida M.E., Jamorski C., Casida K.C., Salahub D.R. Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold. J. Chem. Phys. 1998;108:4439–4449. doi: 10.1063/1.475855. DOI
Slanina Z., Uhlík F., Adamowicz L., Akasaka T., Nagase S., Lu X. Stability issues in computational screening of carbon nanostructures: Illustrations on La endohedrals. Mol. Simul. 2017 in press.
Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., et al. Gaussian 09, Rev. C.01. Gaussian Inc.; Wallingford, CT, USA: 2013.
Slanina Z. Equilibrium isomeric mixtures: Potential energy hypersurfaces as originators of the description of the overall thermodynamic s and kinetics. Int. Rev. Phys. Chem. 1987;6:251–267. doi: 10.1080/01442358709353407. DOI
Slanina Z., Uhlík F., Zerner M.C. C5
Sun M.-L., Slanina Z., Lee S.-L., Uhlík F., Adamowicz L. AM1 computations on seven isolated-pentagon-rule isomers of C80. Chem. Phys. Lett. 1995;246:66–72. doi: 10.1016/0009-2614(95)01084-M. DOI
Slanina Z., Adamowicz L. On relative stabilities of dodecahedron-shaped and bowl-shaped structures of C20. Thermochim. Acta. 1992;205:299–306. doi: 10.1016/0040-6031(92)85272-W. DOI
Nagase S., Kobayashi K., Akasaka T. Unconventional cage structures of endohedral metallofullerenes. J. Mol. Struct. 1999;461/462:97–104. doi: 10.1016/S0166-1280(98)00465-5. DOI
Cioslowski J. Electronic Structure Calculations on Fullerenes and Their Derivatives. Oxford University Press; Oxford, UK: 1995.
Slanina Z., Uhlík F., Lee S.-L., Suzuki M., Lu X., Mizorogi N., Nagase S., Akasaka T. Calculated temperature development of the relative stabilities of Yb@C82 isomers. Fuller. Nanotub. Carbon Nanostruct. 2014;22:147–154. doi: 10.1080/1536383X.2013.794345. DOI
Slanina Z., Uhlík F., Feng L., Adamowicz L. Sc2O@C78: Calculations of the yield ratio for two observed isomers. Fuller. Nanotub. Carbon Nanostruct. 2017;25:124–127. doi: 10.1080/1536383X.2016.1250078. DOI
Okubo S., Kato T., Inakuma M., Shinohara H. Separation and characterization of ESR-active lanthanum endohedral fullerenes. New Diam. Front. Carbon Technol. 2001;11:285–294.
Uhlík F., Slanina Z., Lee S.-L., Adamowicz L., Nagase S. Stability calculations for Eu@C74 isomers. Int. J. Quantum Chem. 2013;113:729–733. doi: 10.1002/qua.24061. DOI
Cross R.J., Saunders M. Transmutation of fullerenes. J. Am. Chem. Soc. 2005;127:3044–3047. doi: 10.1021/ja045521r. PubMed DOI
Slanina Z., Uhlík F., Lee S.-L., Adamowicz L., Nagase S. Computations of endohedral fullerenes: The Gibbs energy treatment. J. Comput. Methods Sci. Eng. 2006;6:243–250.
Slanina Z., François J.-P., Kolb M., Bakowies D., Thiel W. Calculated relative stabilities of C84. Fuller. Sci. Technol. 1993;1:221–230. doi: 10.1080/10641229308018364. DOI
Gan L.H., Lei D., Fowler P.W. Structural interconnections and the role of heptagonal rings in endohedral trimetallic nitride template fullerenes. J. Comput. Chem. 2016;37:1907–1913. doi: 10.1002/jcc.24407. PubMed DOI
Slanina Z., Zhao X., Kurita N., Gotoh H., Uhlík F., Rudziński J.M., Lee K.H., Adamowicz L. Computing the relative gas-phase populations of C60 and C70: Beyond the traditional Δ PubMed DOI
Slanina Z., Uhlík F., Lee S.-L., Adamowicz L., Nagase S. MPWB1K calculations of stepwise encapsulations: Lix@C60. Chem. Phys. Lett. 2008;463:121–123. doi: 10.1016/j.cplett.2008.07.105. DOI
Slanina Z., Uhlík F., Lee S.-L., Wang B.-C., Adamowicz L., Suzuki M., Haranaka M., Feng L., Lu X., Nagase S., et al. Towards relative populations of non-isomeric metallofullerenes: La@C76(Td) vs. La2@C76(Cs,17490) Fuller. Nanotub. Carbon Nanostruct. 2014;22:299–306. doi: 10.1080/1536383X.2013.863764. DOI
Eggen B.R., Heggie M.I., Jungnickel G., Latham C.D., Jones R., Briddon P.R. Autocatalysis during fullerene growth. Science. 1996;272:87–96. doi: 10.1126/science.272.5258.87. DOI
Slanina Z., Zhao X., Uhlík F., Ozawa M., Ōsawa E. Computational modelling of the metal and other elemental catalysis in the Stone-Wales fullerene rearrangements. J. Organomet. Chem. 2000;599:57–61. doi: 10.1016/S0022-328X(99)00720-2. DOI
Mercado B.Q., Stuart M.A., Mackey M.A., Pickens J.E., Confait B.S., Stevenson S., Easterling M.L., Valencia R., Rodríguez-Fortea A., Poblet J.M., et al. Sc-2(mu(2)-O) trapped in a fullerene cage: The isolation and structural characterization of Sc-2(mu(2)-O)@C-s(6)-C-82 and the relevance of the thermal and entropic effects in fullerene isomer selection. J. Am. Chem. Soc. 2010;132:12098–12105. doi: 10.1021/ja104902e. PubMed DOI
Slanina Z., Uhlík F., Lee S.-L., Akasaka T., Nagase S. Carbon nanostructures: Calculations of their energetics, thermodynamics and stability. In: Guldi D.M., Martín N., editors. Carbon Nanotubes and Related Structures. Wiley-VCH Verlag; Weinheim, Germany: 2010. pp. 491–523.
Rodríguez-Fortea A., Balch A. L., Poblet J. M. Endohedral metallofullerenes: A unique host-guest association. Chem. Soc. Rev. 2011;40:3551–3563. doi: 10.1039/c0cs00225a. PubMed DOI
Slanina Z., Uhlík F., Feng L., Adamowicz L. Evaluation of the relative stabilities of two non-IPR isomers of Sm@C76. Fuller. Nanotub. Carbon Nanostruct. 2016;24:339–344. doi: 10.1080/1536383X.2016.1139576. DOI
Chi M., Zhang Z., Han P., Fang X., Jia W., Dong H., Xu B. Geometric and electronic structures of new endohedral fullerenes: Eu@C72. J. Mol. Model. 2008;14:465–470. doi: 10.1007/s00894-008-0304-1. PubMed DOI
Yang T., Zhao X. Missing metallofullerene Yb@C72: A density functional theory survey. Chem. Phys. 2013;423:173–177. doi: 10.1016/j.chemphys.2013.07.010. DOI