Eu@C72: Computed Comparable Populations of Two Non-IPR Isomers

. 2017 Jun 24 ; 22 (7) : . [epub] 20170624

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28672819

Relative concentrations of six isomeric Eu@C 72 -one based on the IPR C 72 cage (i.e., obeying the isolated-pentagon rule, IPR), two cages with a pentagon-pentagon junction (symmetries C 2 and C 2 v ), a cage with one heptagon, a cage with two heptagons, and a cage with two pentagon-pentagon fusions-are DFT computed using the Gibbs energy in a broad temperature interval. It is shown that the two non-IPR isomers with one pentagon-pentagon junction prevail at any relevant temperature and exhibit comparable populations. The IPR-satisfying structure is disfavored by both energy and entropy.

Zobrazit více v PubMed

Fowler P.W., Manolopoulos D.E. Magic Numbers and Stable structures for fullerenes, fullerides, and fullerenium ions. Nature. 1992;355:428–430. doi: 10.1038/355428a0. DOI

Tan Y.-Z., Xie S.-Y., Huang R.-B., Zheng L.-S. The stabilization of fused-pentagon fullerene molecules. Nat. Chem. 2009;1:450–460. doi: 10.1038/nchem.329. PubMed DOI

Popov A.A., Yang S., Dunsch L. Endohedral fullerenes. Chem. Rev. 2013;113:5989–6113. doi: 10.1021/cr300297r. PubMed DOI

Diener M.D., Alford J.M. Isolation and properties of small-bandgap fullerenes. Nature. 1998;393:668–671.

Boltalina O.V., Ioffe I.N., Sidorov L.N., Seifert G., Vietze K. Ionization energy of fullerenes. J. Am. Chem. Soc. 2000;122:9745–9749. doi: 10.1021/ja000734b. DOI

Wan T.S.M., Zhang H.W., Nakane T., Xu Z.D., Inakuma M., Shinohara H., Kobayashi K., Nagase S. Production, isolation, and electronic properties of missing fullerenes: Ca@C72 and Ca@C74. J. Am. Chem. Soc. 1998;120:6806–6807. doi: 10.1021/ja972478h. DOI

Kato H., Taninaka A., Sugai T., Shinohara H. Structure of a missing-caged metallofullerene: La2@C72. J. Am. Chem. Soc. 2003;125:7782–7783. doi: 10.1021/ja0353255. PubMed DOI

Wakahara T., Nikawa H., Kikuchi T., Nakahodo T., Rahman G.M.A., Tsuchiya T., Maeda Y., Akasaka T., Yoza K., Horn E., et al. La@C72 having a non-IPR carbon cage. J. Am. Chem. Soc. 2006;128:14228–14229. doi: 10.1021/ja064751y. PubMed DOI

Slanina Z., Ishimura K., Kobayashi K., Nagase S. C72 isomers: The IPR-satisfying cage is disfavored by both energy and entropy. Chem. Phys. Lett. 2004;384:114–118. doi: 10.1016/j.cplett.2003.11.097. DOI

Kobayashi K., Nagase S., Yoshida M., Ōsawa E. Endohedral metallofullerenes. Are the isolated pentagon rule and fullerene structures always satisfied? J. Am. Chem. Soc. 1997;119:12693–12694. doi: 10.1021/ja9733088. DOI

Slanina Z., Kobayashi K., Nagase S. Ca@C72 IPR and non-IPR structures: Computed temperature development of their relative concentrations. Chem. Phys. 2003;372:810–814. doi: 10.1016/S0009-2614(03)00519-0. DOI

Slanina Z., Lee S.-L., Kobayashi K., Nagase S. Si60 clusters: AM1 computed Ih/C2v relative populations. J. Mol. Struct. 1994;312:175–178. doi: 10.1016/S0166-1280(09)80030-4. DOI

Slanina Z., Zhao X., Deota P., Ōsawa E. Relative stabilities of C92 IPR fullerenes. J. Mol. Model. 2000;6:312–317. doi: 10.1007/PL00010732. DOI

Slanina Z., Uhlík F., Zhao X., Ōsawa E. Enthalpy-entropy interplay for C36 cages: B3LYP/6-31G* calculations. J. Chem. Phys. 2000;113:4933–4937. doi: 10.1063/1.1288368. DOI

Slanina Z., Lee S.-L., Uhlík F., Adamowicz L., Nagase S. Computing relative stabilities of metallofullerenes by Gibbs energy treatments. Theor. Chem. Acc. 2007;117:315–322. doi: 10.1007/s00214-006-0150-0. DOI

Slanina Z., Uhlík F., Lee S.-L., Adamowicz L., Akasaka T., Nagase S. Calculations of metallofullerene yields. J. Comput. Theor. Nanosci. 2011;8:2233–2239. doi: 10.1166/jctn.2011.1950. DOI

Bucher K., Epple L., Mende J., Mehring M., Jansen M. Synthesis, isolation and characterization of new endohedral fullerenes M@C72 (M = Eu, Sr, Yb) Phys. Stat. Solid. 2006;243:3025–3027. doi: 10.1002/pssb.200669110. DOI

Bucher K., Mende J., Mehring M., Jansen M. Isolation and spectroscopic characterization of Eu@C72. Fulleren. Nanotub. Carbon Nanostruct. 2007;15:29–42. doi: 10.1080/15363830600811961. DOI

Slanina Z., Zhao X., Uhlík F., Ōsawa E. Non-IPR fullerenes: C36 and C72. In: Kuzmany H., Fink J., Mehring M., Roth S., editors. Electronic Properties of Novel Materials—Science and Technology of Molecular Nanostructures. AIP; Melville, NY, USA: 1999. pp. 179–182.

Slanina Z., Zhao X., Deota P., Ōsawa E. Calculations of higher fullerenes and quasi-fullerenes. In: Kadish K.M., Ruoff R.S., editors. Fullerenes: Chemistry, Physics, and Technology. John Wiley; New York, NY, USA: 2000. pp. 283–330.

Slanina Z., Zhao X., Grabuleda X., Ozawa M., Uhlík F., Ivanov P. M., Kobayashi K., Nagase S. Mg@C72: MNDO/d evaluation of the isomeric composition. J. Mol. Graph. Model. 2001;19:252–255. doi: 10.1016/S1093-3263(00)00092-9. PubMed DOI

Slanina Z., Uhlík F., Adamowicz L., Kobayashi K., Nagase S. Electronic excited states and stabilities of fullerenes isomers of C78 and Mg@C72. Int. J. Quantum Chem. 2004;100:610–616. doi: 10.1002/qua.10818. DOI

Slanina Z., Kobayashi K., Nagase S. Ca@C74 isomers: Relative concentrations at higher temperatures. Chem. Phys. 2004;301:153–157. doi: 10.1016/j.chemphys.2004.03.010. PubMed DOI

Slanina Z., Adamowicz L., Kobayashi K., Nagase S. Gibbs energy-based treatment of metallofullerenes: Ca@C72, Ca@C74, Ca@C82, and La@C82. Mol. Simul. 2005;31:71–77. doi: 10.1080/08927020412331308458. DOI

Slanina Z., Chen Z., Schleyer P.V.R., Uhlík F., Lu X., Nagase S. La2@C72 and Sc2@C72: Computational characterizations. J. Phys. Chem. A. 2006;110:2231–2234. doi: 10.1021/jp055894u. PubMed DOI

Lu X., Nikawa H., Nakahodo T., Tsuchiya T., Ishitsuka M.O., Maeda Y., Akasaka T., Toki M., Sawa H., Slanina Z., et al. A chemical understanding of a non-IPR metallofullerene: Stabilization of encaged metals on fused-pentagon bonds in La2@C72. J. Am. Chem. Soc. 2008;130:9129–9136. doi: 10.1021/ja8019577. PubMed DOI

Lu X., Nikawa H., Tsuchiya T., Maeda Y., Ishitsuka M.O., Akasaka T., Toki M., Sawa H., Slanina Z., Mizorogi N., et al. Bis-carbene adducts of non-IPR La2@C72: Localization of high reactivity around fused pentagons and electrochemical properties. Angew. Chem. Int. Ed. 2008;47:8642–8645. doi: 10.1002/anie.200803529. PubMed DOI

Feng Y., Wang T., Wu J., Feng L., Xiang J., Ma Y., Zhang Z., Jiang L., Shua C., Wang C. Structural and electronic studies of metal carbide clusterfullerene Sc2C2@Cs-C72. Nanoscale. 2013;5:6704–6707. doi: 10.1039/c3nr01739g. PubMed DOI

Yamada M., Muto Y., Kurihara H., Slanina Z., Suzuki M., Maeda Y., Rubin Y., Olmstead M.M., Balch A.L., Nagase S., et al. Regioselective cage opening of La2@D2(10611)-C72 with 5,6-Diphenyl-3- (2-pyridyl)-1,2,4-triazine. Angew. Chem. Int. Ed. 2015;54:2232–2235. doi: 10.1002/anie.201410012. PubMed DOI

Gan L.-H., Wu R., Tian J.-L., Fowler P.W. An atlas of endohedral Sc2S cluster fullerenes. Phys. Chem. Chem. Phys. 2017;19:419–425. doi: 10.1039/C6CP07370K. PubMed DOI

Becke A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993;98:5648–5652. doi: 10.1063/1.464913. DOI

Lee C., Yang W., Parr R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B. 1988;37:785–789. doi: 10.1103/PhysRevB.37.785. PubMed DOI

Krishnan R., Binkley J.S., Seeger R., Pople J.A. Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys. 1980;72:650–654. doi: 10.1063/1.438955. DOI

Cao X.Y., Dolg M. Segmented contraction scheme for small-core lanthanide pseudopotential basis sets. J. Mol. Struct. 2002;581:139–147. doi: 10.1016/S0166-1280(01)00751-5. DOI

Casida M.E., Jamorski C., Casida K.C., Salahub D.R. Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold. J. Chem. Phys. 1998;108:4439–4449. doi: 10.1063/1.475855. DOI

Slanina Z., Uhlík F., Adamowicz L., Akasaka T., Nagase S., Lu X. Stability issues in computational screening of carbon nanostructures: Illustrations on La endohedrals. Mol. Simul. 2017 in press.

Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., et al. Gaussian 09, Rev. C.01. Gaussian Inc.; Wallingford, CT, USA: 2013.

Slanina Z. Equilibrium isomeric mixtures: Potential energy hypersurfaces as originators of the description of the overall thermodynamic s and kinetics. Int. Rev. Phys. Chem. 1987;6:251–267. doi: 10.1080/01442358709353407. DOI

Slanina Z., Uhlík F., Zerner M.C. C5

Sun M.-L., Slanina Z., Lee S.-L., Uhlík F., Adamowicz L. AM1 computations on seven isolated-pentagon-rule isomers of C80. Chem. Phys. Lett. 1995;246:66–72. doi: 10.1016/0009-2614(95)01084-M. DOI

Slanina Z., Adamowicz L. On relative stabilities of dodecahedron-shaped and bowl-shaped structures of C20. Thermochim. Acta. 1992;205:299–306. doi: 10.1016/0040-6031(92)85272-W. DOI

Nagase S., Kobayashi K., Akasaka T. Unconventional cage structures of endohedral metallofullerenes. J. Mol. Struct. 1999;461/462:97–104. doi: 10.1016/S0166-1280(98)00465-5. DOI

Cioslowski J. Electronic Structure Calculations on Fullerenes and Their Derivatives. Oxford University Press; Oxford, UK: 1995.

Slanina Z., Uhlík F., Lee S.-L., Suzuki M., Lu X., Mizorogi N., Nagase S., Akasaka T. Calculated temperature development of the relative stabilities of Yb@C82 isomers. Fuller. Nanotub. Carbon Nanostruct. 2014;22:147–154. doi: 10.1080/1536383X.2013.794345. DOI

Slanina Z., Uhlík F., Feng L., Adamowicz L. Sc2O@C78: Calculations of the yield ratio for two observed isomers. Fuller. Nanotub. Carbon Nanostruct. 2017;25:124–127. doi: 10.1080/1536383X.2016.1250078. DOI

Okubo S., Kato T., Inakuma M., Shinohara H. Separation and characterization of ESR-active lanthanum endohedral fullerenes. New Diam. Front. Carbon Technol. 2001;11:285–294.

Uhlík F., Slanina Z., Lee S.-L., Adamowicz L., Nagase S. Stability calculations for Eu@C74 isomers. Int. J. Quantum Chem. 2013;113:729–733. doi: 10.1002/qua.24061. DOI

Cross R.J., Saunders M. Transmutation of fullerenes. J. Am. Chem. Soc. 2005;127:3044–3047. doi: 10.1021/ja045521r. PubMed DOI

Slanina Z., Uhlík F., Lee S.-L., Adamowicz L., Nagase S. Computations of endohedral fullerenes: The Gibbs energy treatment. J. Comput. Methods Sci. Eng. 2006;6:243–250.

Slanina Z., François J.-P., Kolb M., Bakowies D., Thiel W. Calculated relative stabilities of C84. Fuller. Sci. Technol. 1993;1:221–230. doi: 10.1080/10641229308018364. DOI

Gan L.H., Lei D., Fowler P.W. Structural interconnections and the role of heptagonal rings in endohedral trimetallic nitride template fullerenes. J. Comput. Chem. 2016;37:1907–1913. doi: 10.1002/jcc.24407. PubMed DOI

Slanina Z., Zhao X., Kurita N., Gotoh H., Uhlík F., Rudziński J.M., Lee K.H., Adamowicz L. Computing the relative gas-phase populations of C60 and C70: Beyond the traditional Δ PubMed DOI

Slanina Z., Uhlík F., Lee S.-L., Adamowicz L., Nagase S. MPWB1K calculations of stepwise encapsulations: Lix@C60. Chem. Phys. Lett. 2008;463:121–123. doi: 10.1016/j.cplett.2008.07.105. DOI

Slanina Z., Uhlík F., Lee S.-L., Wang B.-C., Adamowicz L., Suzuki M., Haranaka M., Feng L., Lu X., Nagase S., et al. Towards relative populations of non-isomeric metallofullerenes: La@C76(Td) vs. La2@C76(Cs,17490) Fuller. Nanotub. Carbon Nanostruct. 2014;22:299–306. doi: 10.1080/1536383X.2013.863764. DOI

Eggen B.R., Heggie M.I., Jungnickel G., Latham C.D., Jones R., Briddon P.R. Autocatalysis during fullerene growth. Science. 1996;272:87–96. doi: 10.1126/science.272.5258.87. DOI

Slanina Z., Zhao X., Uhlík F., Ozawa M., Ōsawa E. Computational modelling of the metal and other elemental catalysis in the Stone-Wales fullerene rearrangements. J. Organomet. Chem. 2000;599:57–61. doi: 10.1016/S0022-328X(99)00720-2. DOI

Mercado B.Q., Stuart M.A., Mackey M.A., Pickens J.E., Confait B.S., Stevenson S., Easterling M.L., Valencia R., Rodríguez-Fortea A., Poblet J.M., et al. Sc-2(mu(2)-O) trapped in a fullerene cage: The isolation and structural characterization of Sc-2(mu(2)-O)@C-s(6)-C-82 and the relevance of the thermal and entropic effects in fullerene isomer selection. J. Am. Chem. Soc. 2010;132:12098–12105. doi: 10.1021/ja104902e. PubMed DOI

Slanina Z., Uhlík F., Lee S.-L., Akasaka T., Nagase S. Carbon nanostructures: Calculations of their energetics, thermodynamics and stability. In: Guldi D.M., Martín N., editors. Carbon Nanotubes and Related Structures. Wiley-VCH Verlag; Weinheim, Germany: 2010. pp. 491–523.

Rodríguez-Fortea A., Balch A. L., Poblet J. M. Endohedral metallofullerenes: A unique host-guest association. Chem. Soc. Rev. 2011;40:3551–3563. doi: 10.1039/c0cs00225a. PubMed DOI

Slanina Z., Uhlík F., Feng L., Adamowicz L. Evaluation of the relative stabilities of two non-IPR isomers of Sm@C76. Fuller. Nanotub. Carbon Nanostruct. 2016;24:339–344. doi: 10.1080/1536383X.2016.1139576. DOI

Chi M., Zhang Z., Han P., Fang X., Jia W., Dong H., Xu B. Geometric and electronic structures of new endohedral fullerenes: Eu@C72. J. Mol. Model. 2008;14:465–470. doi: 10.1007/s00894-008-0304-1. PubMed DOI

Yang T., Zhao X. Missing metallofullerene Yb@C72: A density functional theory survey. Chem. Phys. 2013;423:173–177. doi: 10.1016/j.chemphys.2013.07.010. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...