Population variation in the trophic niche of the Trinidadian guppy from different predation regimes

. 2017 Jul 18 ; 7 (1) : 5770. [epub] 20170718

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/pmid28720857
Odkazy

PubMed 28720857
PubMed Central PMC5515894
DOI 10.1038/s41598-017-06163-6
PII: 10.1038/s41598-017-06163-6
Knihovny.cz E-zdroje

Population variation in trophic niche is widespread among organisms and is of increasing interest given its role in both speciation and adaptation to changing environments. Trinidadian guppies (Poecilia reticulata) inhabiting stream reaches with different predation regimes have rapidly evolved divergent life history traits. Here, we investigated the effects of both predation and resource availability on guppy trophic niches by evaluating their gut contents, resource standing stocks, and δ15N and δ13C stable isotopes across five streams during the wet season. We found that guppies from low predation (LP) sites had a consistently higher trophic position and proportion of invertebrates in their guts and assimilate less epilithon than guppies from high predation (HP) sites. Higher trophic position was also associated with lower benthic invertebrate availability. Our results suggest that LP guppies could be more efficient invertebrate consumers, possibly as an evolutionary response to greater intraspecific competition for higher quality food. This may be intensified by seasonality, as wet season conditions can alter resource availability, feeding rates, and the intensity of intraspecific competition. Understanding how guppy diets vary among communities is critical to elucidating the role of niche shifts in mediating the link between environmental change and the evolution of life histories.

Zobrazit více v PubMed

Martin RA, Pfennig DW. Disruptive selection in natural populations: the roles of ecological specialization and resource competition. American Naturalist. 2009;174:268–281. doi: 10.1086/600090. PubMed DOI

Whiteley AR. Trophic polymorphism in a riverine fish: morphological, dietary, and genetic analysis of mountain whitefish. Biological Journal of the Linnean Society. 2007;92:253–267. doi: 10.1111/j.1095-8312.2007.00845.x. DOI

Smith TB. Bill size polymorphism and intraspecific niche utilization in an african finch. Nature. 1987;329:717–719. doi: 10.1038/329717a0. DOI

Svanback R, Eklov P. Morphology in perch affects habitat specific feeding efficiency. Functional Ecology. 2004;18:503–510. doi: 10.1111/j.0269-8463.2004.00858.x. DOI

Robinson BW, Wilson DS. Character release and displacement in fishes - A neglected literature. American Naturalist. 1994;144:596–627. doi: 10.1086/285696. DOI

Langerhans RB, Layman CA, Langerhans AK, Dewitt TJ. Habitat-associated morphological divergence in two Neotropical fish species. Biological Journal of the Linnean Society. 2003;80:689–698. doi: 10.1111/j.1095-8312.2003.00266.x. DOI

Schielke EG, Palkovacs EP, Post DM. Eco-evolutionary feedbacks drive niche differentiation in the alewife. Biological Theory. 2011;6:211–219. doi: 10.1007/s13752-012-0031-9. DOI

Reimchen TE, Ingram T, Hansen SC. Assessing niche differences of sex, armour and asymmetry phenotypes using stable isotope analyses in Haida Gwaii sticklebacks. Behaviour. 2008;145:561–577. doi: 10.1163/156853908792451449. DOI

Swanson BO, Gibb AC, Marks JC, Hendrickson DA. Trophic polymorphism and behavioral differences decrease intraspecific competition in a cichlid. Herichthys minckleyi. Ecology. 2003;84:1441–1446. doi: 10.1890/02-0353. DOI

Leaver, S. D. & Reimchen, T. E. Abrupt changes in defense and trophic morphology of the giant threespine stickleback (Gasterosteus sp.) following colonization of a vacant habtitat. Biological Journal of the Linnean Society107 (2012).

Reznick DA, Bryga H, Endler JA. Experimentally induced life-history evolution in a natural population. Nature. 1990;346:357–359. doi: 10.1038/346357a0. DOI

Reznick DN, Bryga HA. Life-history evolution in guppies (Poecilia reticulata: Poeciliidae) 5. Genetic basis of parallelism in life histories. American Naturalist. 1996;147:339–359. doi: 10.1086/285855. DOI

Bassar RD, et al. Direct and indirect ecosystem effects of evolutionary adaptation in the Trinidadian guppy (Poecilia reticulata) American Naturalist. 2012;180:167–185. doi: 10.1086/666611. PubMed DOI

Travis, J. et al. In Advances in Ecological Research: Eco-evolutionary dynamics (eds Jordi Moya-Larano, Jennifer Rowntree, & Guy Woodward) (Academic Press, 2014).

Reznick DN, Bassar RD, Travis J, Rodd HF. Life history evolution in guppies VIII: The demographics of density regulation in guppies (Poecilia reticulata) Evolution. 2012;66:2903–2915. doi: 10.1111/j.1558-5646.2012.01650.x. PubMed DOI

Bassar RD, Lopez-Sepulcre A, Reznick DN, Travis J. Experimental evidence for density-dependent regulation and selection on Trinidadian guppy life histories. American Naturalist. 2013;181:25–38. doi: 10.1086/668590. PubMed DOI

Reznick D, Butler MJ, Rodd H. Life-history evolution in guppies. VII. The comparative ecology of high- and low-predation environments. American Naturalist. 2001;157:126–140. PubMed

Kohler TJ, et al. Flow, nutrients, and light availability influence Neotropical epilithon biomass and stoichiometry. Freshwater Science. 2012;31:1019–1034. doi: 10.1899/11-141.1. DOI

Grether GF, Millie DF, Bryant MJ, Reznick DN, Mayea W. Rain forest canopy cover, resource availability, and life history evolution in guppies. Ecology. 2001;82:1546–1559. doi: 10.1890/0012-9658(2001)082[1546:RFCCRA]2.0.CO;2. DOI

Zandonà E, et al. Diet quality and prey selectivity correlate with life histories and predation regime in Trinidadian guppies. Functional Ecology. 2011;25:964–973. doi: 10.1111/j.1365-2435.2011.01865.x. DOI

Bassar RD, et al. Local adaptation in Trinidadian guppies alters ecosystem processes. Proceedings of the National Academy of Sciences of the United States of America. 2010;107:3616–3621. doi: 10.1073/pnas.0908023107. PubMed DOI PMC

Zandonà E, Auer SK, Kilham SS, Reznick DN. Contrasting population and diet influences on gut length of an omnivorous tropical fish, the Trinidadian guppy (Poecilia reticulata) PLoS ONE. 2015;10:e0136079. doi: 10.1371/journal.pone.0136079. PubMed DOI PMC

Sullam KE, et al. Changes in digestive traits and body nutritional composition accommodate a trophic niche shift in Trinidadian guppies. Oecologia. 2015;177:245–257. doi: 10.1007/s00442-014-3158-5. PubMed DOI

German DP, Horn MH. Gut length and mass in herbivorous and carnivorous prickleback fishes (Teleostei: Stichaeidae): ontogenetic, dietary, and phylogenetic effects. Marine Biology. 2006;148:1123–1134. doi: 10.1007/s00227-005-0149-4. PubMed DOI

Wagner CE, McIntyre PB, Buels KS, Gilbert DM, Michel E. Diet predicts intestine length in Lake Tanganyika’s cichlid fishes. Functional Ecology. 2009;23:1122–1131. doi: 10.1111/j.1365-2435.2009.01589.x. DOI

MacArthur RH, Pianka ER. On optimal use of a patchy environment. American Naturalist. 1966;100:603–609. doi: 10.1086/282454. DOI

Palkovacs, E. P., Wasserman, B. A. & Kinnison, M. T. Eco-evolutionary trophic dynamics: loss of top predators drives trophic evolution and ecology of prey. PLoS ONE6, doi:10.1371/journal.pone.0018879 (2011). PubMed PMC

Boecklen WJ, Yarnes CT, Cook BA, James AC. On the Use of Stable Isotopes in Trophic Ecology. Annual Review of Ecology, Evolution, and Systematics. 2011;42:411–440. doi: 10.1146/annurev-ecolsys-102209-144726. DOI

Ghalambor CK, Reznick DN, Walker JA. Constraints on adaptive evolution: The functional trade-off between reproduction and fast-start swimming performance in the Trinidadian guppy (Poecilia reticulata) American Naturalist. 2004;164:38–50. doi: 10.1086/421412. PubMed DOI

Cruz-Rivera E, Hay ME. Can quantity replace quality? Food choice, compensatory feeding, and fitness of marine mesograzers. Ecology. 2000;81:201–219. doi: 10.1890/0012-9658(2000)081[0201:CQRQFC]2.0.CO;2. DOI

Karasov, W. H. & del Rio, M. C. Physiological ecology: how animal process energy, nutrients, and toxins (Princeton University Press, 2007).

German DP, Sung A, Jhaveri P, Agnihotri R. More than one way to be an herbivore: convergent evolution of herbivory using different digestive strategies in prickleback fishes (Stichaeidae) Zoology. 2015;118:161–170. doi: 10.1016/j.zool.2014.12.002. PubMed DOI

Croft DP, et al. Mechanisms underlying shoal composition in the Trinidadian guppy. Poecilia reticulata. Oikos. 2003;100:429–438. doi: 10.1034/j.1600-0706.2003.12023.x. DOI

Heatherly, T. Flow regime, guppy Introduction and light manipulation influence invertebrate assemblages in Trinidadian streams PhD thesis University of Nebraska - Lincoln, (2012).

Power ME, Holomuzki JR, Lowe RL. Food webs in Mediterranean rivers. Hydrobiologia. 2013;719:119–136. doi: 10.1007/s10750-013-1510-0. DOI

Bowes RE, Lafferty MH, Thorp JH. Less means more: nutrient stress leads to higher δ15N ratios in fish. Freshwater Biology. 2014;59:1926–1931. doi: 10.1111/fwb.12396. DOI

Losos JB, Jackman TR, Larson A, Queiroz K. d. & Rodríguez-Schettino, L. Contingency and Determinism in Replicated Adaptive Radiations of Island Lizards. Science. 1998;279:2115–2118. doi: 10.1126/science.279.5359.2115. PubMed DOI

Grant PR, R GB. Adaptive radiation of Darwin’s finches. American Scientist. 2002;90:130–139. doi: 10.1511/2002.2.130. DOI

Schluter D. Ecological causes of adaptive radiation. American Naturalist. 1996;148:S40–S64. doi: 10.1086/285901. DOI

Klingenberg CP, Barluenga M, Meyer A. Body shape variation in cichlid fishes of the Amphilophus citrinellus species complex. Biological Journal of the Linnean Society. 2003;80:397–408. doi: 10.1046/j.1095-8312.2003.00246.x. DOI

Harmon LJ, et al. Evolutionary diversification in stickleback affects ecosystem functioning. Nature. 2009;458:1167–1170. doi: 10.1038/nature07974. PubMed DOI

Seehausen O. Ecology: speciation affects ecosystems. Nature. 2009;458:1122–1123. doi: 10.1038/4581122a. PubMed DOI

Phillip DA, et al. Annotated list and key to the stream fishes of Trinidad & Tobago. Zootaxa. 2013;3711:1–64. doi: 10.11646/zootaxa.3711.1.1. PubMed DOI

Perez, G. R. Guia para el estudio de los macroinvertebrados acuaticos del Departimento de Antioquia (Universidad de Antioquia, 1996).

Loeb S. An in situ method for measuring the primary productivity and standing crop of the epilithic periphyton community in lentic systems. Limnology and Oceanography. 1981;26:394–399. doi: 10.4319/lo.1981.26.2.0394. DOI

Vander Zanden MJ, Cabana G, Rasmussen JB. Comparing trophic position of freshwater fish calculated using stable nitrogen isotope ratios (delta N-15) and literature dietary data. Canadian Journal of Fisheries and Aquatic Sciences. 1997;54:1142–1158. doi: 10.1139/f97-016. DOI

Anderson C, Cabana G. delta N-15 in riverine food webs: effects of N inputs from agricultural watersheds. Canadian Journal of Fisheries and Aquatic Sciences. 2005;62:333–340. doi: 10.1139/f04-191. DOI

Dennis CA, MacNeil MA, Rosati JY, Pitcher TE, Fisk AT. Diet discrimination factors are inversely related to δ15N and δ13C values of food for fish under controlled conditions. Rapid Communications in Mass Spectrometry. 2010;24:3515–3520. doi: 10.1002/rcm.4807. PubMed DOI

Brito EF, Moulton TP, De Souza ML, Bunn SE. Stable isotope analysis indicates microalgae as the predominant food source of fauna in a coastal forest stream, south-east Brazil. Austral Ecology. 2006;31:623–633. doi: 10.1111/j.1442-9993.2006.01610.x. DOI

Post DM, et al. Getting to the fat of the matter: models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia. 2007;152:179–189. doi: 10.1007/s00442-006-0630-x. PubMed DOI

Parnell AC, Inger R, Bearhop S, Jackson AL. Source partitioning using stable isotopes: coping with too much variation. Plos One. 2010;5:e9672. doi: 10.1371/journal.pone.0009672. PubMed DOI PMC

R: a language and environment for statistical computing (Vienna, Austria, 2010).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...