Nanoparticles Suitable for BCAA Isolation Can Serve for Use in Magnetic Lipoplex-Based Delivery System for L, I, V, or R-rich Antimicrobial Peptides

. 2016 Mar 31 ; 9 (4) : . [epub] 20160331

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28773383

This paper investigates the synthesis of paramagnetic nanoparticles, which are able to bind branched chain amino acids (BCAAs)-leucine, valine, and isoleucine and, thus, serve as a tool for their isolation. Further, by this, we present an approach for encapsulation of nanoparticles into a liposome cavity resulting in a delivery system. Analyses of valine and leucine in entire complex show that 31.3% and 32.6% recoveries are reached for those amino acids. Evaluation of results shows that the success rate of delivery in Escherichia coli (E. coli) is higher in the case of BCAAs on nanoparticles entrapped in liposomes (28.7% and 34.7% for valine and leucine, respectively) when compared to nanoparticles with no liposomal envelope (18.3% and 13.7% for valine and leucine, respectively). The nanoparticles with no liposomal envelope exhibit the negative zeta potential (-9.1 ± 0.3 mV); however, their encapsulation results in a shift into positive values (range of 28.9 ± 0.4 to 33.1 ± 0.5 mV). Thus, electrostatic interactions with negatively-charged cell membranes (approx. -50 mV in the case of E. coli) leads to a better uptake of cargo. Our delivery system was finally tested with the leucine-rich antimicrobial peptide (FALALKALKKALKKLKKALKKAL) and it is shown that hemocompatibility (7.5%) and antimicrobial activity of the entire complex against E. coli, Staphylococcus aureus (S. aureus), and methicilin-resistant S. aureus (MRSA) is comparable or better than conventional penicillin antibiotics.

Zobrazit více v PubMed

Sahoo S.K., Parveen S., Panda J.J. The present and future of nanotechnology in human health care. Nanomed. Nanotechnol. Biol. Med. 2007;3:20–31. doi: 10.1016/j.nano.2006.11.008. PubMed DOI

Chun J., Seo S.W., Jung G.Y., Lee J. Easy access to efficient magnetically recyclable separation of histidine-tagged proteins using superparamagnetic nickel ferrite nanoparticle clusters. J. Mater. Chem. 2011;21:6713–6717. doi: 10.1039/c0jm04089d. DOI

Pompa P.P., Martiradonna L., Torre A.D., Sala F.D., Manna L., De Vittorio M., Calabi F., Cingolani R., Rinaldi R. Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control. Nat. Nano. 2006;1:126–130. doi: 10.1038/nnano.2006.93. PubMed DOI

Wu C.-S., Liu F.-K., Ko F.-H. Potential role of gold nanoparticles for improved analytical methods: An introduction to characterizations and applications. Anal. Bioanal. Chem. 2011;399:103–118. doi: 10.1007/s00216-010-4094-9. PubMed DOI

Liu F.-K. Analysis and applications of nanoparticles in the separation sciences: A case of gold nanoparticles. J. Chromatogr. A. 2009;1216:9034–9047. doi: 10.1016/j.chroma.2009.07.026. PubMed DOI

Pinzon-Daza M.L., Campia I., Kopecka J., Garzon R., Ghigo D., Riganti C. Nanoparticle- and liposome-carried drugs: New strategies for active targeting and drug delivery across blood-brain barrier. Current Drug Metab. 2013;14:625–640. doi: 10.2174/1389200211314060001. PubMed DOI

Chomoucka J., Drbohlavova J., Huska D., Adam V., Kizek R., Hubalek J. Magnetic nanoparticles and targeted drug delivering. Pharmacol. Res. 2010;62:144–149. doi: 10.1016/j.phrs.2010.01.014. PubMed DOI

Proud C.G. Regulation of mammalian translation factors by nutrients. Eur. J. Biochem. 2002;269:5338–5349. doi: 10.1046/j.1432-1033.2002.03292.x. PubMed DOI

Katta A., Kundla S., Kakarla S.K., Wu M.Z., Fannin J., Paturi S., Liu H., Addagarla H.S., Blough E.R. Impaired overload-induced hypertrophy is associated with diminished mtor signaling in insulin-resistant skeletal muscle of the obese zucker rat. Am. J. Physiol. Regul. Integr. Compar. Physiol. 2010;299:R1666–R1675. doi: 10.1152/ajpregu.00229.2010. PubMed DOI PMC

She P.X., Olson K.C., Kadota Y., Inukai A., Shimomura Y., Hoppel C.L., Adams S.H., Kawamata Y., Matsumoto H., Sakai R., et al. Leucine and protein metabolism in obese zucker rats. PLos ONE. 2013;8:1–19. doi: 10.1371/journal.pone.0059443. PubMed DOI PMC

Ma Q.Q., Lv Y.F., Gu Y., Dong N., Li D.S., Shan A.S. Rational design of cationic antimicrobial peptides by the tandem of leucine-rich repeat. Amino Acids. 2013;44:1215–1224. doi: 10.1007/s00726-012-1457-x. PubMed DOI

Dong N., Ma Q.Q., Shan A.S., Lv Y.F., Hu W.N., Gu Y., Li Y.Z. Strand length-dependent antimicrobial activity and membrane-active mechanism of arginine- and valine-rich beta-hairpin-like antimicrobial peptides. Antimicrob. Agents Chemother. 2012;56:2994–3003. doi: 10.1128/AAC.06327-11. PubMed DOI PMC

Pauser S., Reszka R., Wagner S., Wolf K.J., Buhr H.J., Berger G. Liposome-encapsulated superparamagnetic iron oxide particles as markers in an mri-guided search for tumor-specific drug carriers. Anti Cancer Drug Des. 1997;12:125–135. PubMed

Pauser S., Reszka R., Wagner S., Wolf K.J., Buhr H.J., Berger G. Superparamagnetic Iron Oxide Particles as Marker Substances for Searching Tumor Specific Liposomes with Magnetic Resonance Imaging. Plenum Press Div Plenum Publishing Corp; New York, NY, USA: 1997. pp. 561–568.

Bakkerwoudenberg I., Lokerse A.F., Tenkate M.T., Melissen P.M.B., Vanvianen W., Vanetten E.W.M. Liposomes as carriers of antimicrobial agents or immunomodulatory agents in the treatment of infections. Eur. J. Clin. Microbiol. Infect. Dis. 1993;12:61–67. doi: 10.1007/BF02389881. PubMed DOI

Moribe K., Maruyama K. Pharmaceutical design of the liposomal antimicrobial agents for infectious disease. Curr. Pharm. Des. 2002;8:441–454. doi: 10.2174/1381612023395853. PubMed DOI

Yang K.W., Gitter B., Ruger R., Wieland G.D., Chen M., Liu X.L., Albrecht V., Fahr A. Antimicrobial peptide-modified liposomes for bacteria targeted delivery of temoporfin in photodynamic antimicrobial chemotherapy. Photochem. Photobiol. Sci. 2011;10:1593–1601. doi: 10.1039/c1pp05100h. PubMed DOI

Goli K.K., Gera N., Liu X.M., Rao B.M., Rojas O.J., Genzer J. Generation and properties of antibacterial coatings based on electrostatic attachment of silver nanoparticles to protein-coated polypropylene fibers. ACS Appl. Mater. Interfaces. 2013;5:5298–5306. doi: 10.1021/am4011644. PubMed DOI

Miller E.L. The penicillins: A review and update. J. Midwifery Women Health. 2002;47:426–434. doi: 10.1016/S1526-9523(02)00330-6. PubMed DOI

Yao Z.W., Hu W., Yin S., Huang Z., Zhu Q., Chen J.N., Zang Y.H., Dong L., Zhang J.F. 3,3′-diindolymethane ameliorates adriamycin-induced cardiac fibrosis via activation of a brca1-dependent anti-oxidant pathway. Pharmacol. Res. 2013;70:139–146. doi: 10.1016/j.phrs.2013.01.006. PubMed DOI

Hanaor D., Michelazzi M., Leonelli C., Sorrell C.C. The effects of carboxylic acids on the aqueous dispersion and electrophoretic deposition of ZrO2. J. Eur. Ceram. Soc. 2012;32:235–244. doi: 10.1016/j.jeurceramsoc.2011.08.015. DOI

Schwegmann H., Feitz A.J., Frimmel F.H. Influence of the zeta potential on the sorption and toxicity of iron oxide nanoparticles on S. cerevisiae and E. coli. J. Colloid Interface Sci. 2010;347:43–48. doi: 10.1016/j.jcis.2010.02.028. PubMed DOI

Wu Z.J., Xiang H., Kim T., Chun M.S., Lee K. Surface properties of submicrometer silica spheres modified with aminopropyltriethoxysilane and phenyltriethoxysilane. J. Colloid Interface Sci. 2006;304:119–124. doi: 10.1016/j.jcis.2006.08.055. PubMed DOI

Rai A.K., Xu X., Lin Z.J., Rai D.K. Conformational search for zwitterionic leucine and hydrated conformers of both the canonical and zwitterionic leucine using the DFT-CPCM model. Vib. Spectrosc. 2011;56:74–81. doi: 10.1016/j.vibspec.2010.10.006. DOI

Zitka O., Cernei N., Heger Z., Matousek M., Kopel P., Kynicky J., Masarik M., Kizek R., Adam V. Microfluidic chip coupled with modified paramagnetic particles for sarcosine isolation in urine. Electrophoresis. 2013;34:2639–2647. doi: 10.1002/elps.201300114. PubMed DOI

Nguyen T., Ostergaard J., Sturup S., Gammelgaard B. Determination of platinum drug release and liposome stability in human plasma by CE-ICP-MS. Int. J. Pharm. 2013;449:95–102. doi: 10.1016/j.ijpharm.2013.03.055. PubMed DOI

Arouri A., Hansen A.H., Rasmussen T.E., Mouritsen O.G. Lipases, liposomes and lipid-prodrugs. Curr. Opin. Colloid Interfaces. 2013;18:419–431. doi: 10.1016/j.cocis.2013.06.001. DOI

Yeung T., Gilbert G.E., Shi J., Silvius J., Kapus A., Grinstein S. Membrane phosphatidylserine regulates surface charge and protein localization. Science. 2008;319:210–213. doi: 10.1126/science.1152066. PubMed DOI

Lutwyche P., Cordeiro C., Wiseman D.J., St-Louis M., Uh M., Hope M.J., Webb M.S., Finlay B.B. Intracellular delivery and antibacterial activity of gentamicin encapsulated in ph-sensitive liposomes. Antimicrob. Agents Chemother. 1998;42:2511–2520. PubMed PMC

Meng Y.S., Hou X.C., Lei J.X., Chen M.M., Cong S.C., Zhang Y.Y., Ding W.M., Li G.L., Li X.R. Multi-functional liposomes enhancing target and antibacterial immunity for antimicrobial and anti-biofilm against methicillin-resistant staphylococcus aureus. Pharm. Res. 2016;33:763–775. doi: 10.1007/s11095-015-1825-9. PubMed DOI

Campanha M.T.N., Mamizuka E.M., Carmona-Ribeiro A.M. Interactions between cationic liposomes and bacteria: The physical-chemistry of the bactericidal action. J. Lipid Res. 1999;40:1495–1500. PubMed

Nakatsuji T., Gallo R.L. Antimicrobial peptides: Old molecules with new ideas. J. Investig. Dermatol. 2012;132:887–895. doi: 10.1038/jid.2011.387. PubMed DOI PMC

Zhao J., Zhao C., Liang G.Z., Zhang M.Z., Zheng J. Engineering antimicrobial peptides with improved antimicrobial and hemolytic activities. J. Chem Inf. Model. 2013;53:3280–3296. doi: 10.1021/ci400477e. PubMed DOI

Singer A.J., Talan D.A. Management of skin abscesses in the era of methicillin-resistant Staphylococcus Aureus. N. Engl. J. Med. 2014;370:1039–1047. doi: 10.1056/NEJMra1212788. PubMed DOI

Lartigue L., Hugounenq P., Alloyeau D., Clarke S.P., Levy M., Bacri J.C., Bazzi R., Brougham D.F., Wilhelm C., Gazeau F. Cooperative organization in iron oxide multi-core nanoparticles potentiates their efficiency as heating mediators and mri contrast agents. ACS Nano. 2012;6:10935–10949. doi: 10.1021/nn304477s. PubMed DOI

Locatelli E., Gil L., Israel L.L., Passoni L., Naddaka M., Pucci A., Reese T., Gomez-Vallejo V., Milani P., Matteoli M., et al. Biocompatible nanocomposite for PET/MRI hybrid imaging. Int. J. Nanomed. 2012;7:6021–6033. PubMed PMC

Daniele M.A., Shaughnessy M.L., Roeder R., Childress A., Bandera Y.P., Foulger S. Magnetic nanoclusters exhibiting protein-activated near-infrared fluorescence. ACS Nano. 2013;7:203–213. doi: 10.1021/nn3037368. PubMed DOI

Dinu-Pirvu C., Ferdes M., Butu A., Ortan A., Ghica M.V. Physicochemical investigation of low soluble biocompounds entrapped in lipid carriers. Farmacia. 2013;61:182–192.

Zitka O., Heger Z., Kominkova M., Skalickova S., Krizkova S., Adam V., Kizek R. Preconcentration based on paramagnetic microparticles for the separation of sarcosine using hydrophilic interaction liquid chromatography coupled with coulometric detection. J. Sep. Sci. 2014;37:465–475. doi: 10.1002/jssc.201301188. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...