Nanoparticles Suitable for BCAA Isolation Can Serve for Use in Magnetic Lipoplex-Based Delivery System for L, I, V, or R-rich Antimicrobial Peptides
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
28773383
PubMed Central
PMC5502924
DOI
10.3390/ma9040260
PII: ma9040260
Knihovny.cz E-zdroje
- Klíčová slova
- Escherichia coli, Staphylococcus aureus, branched chain amino acids, encapsulation, nanomedicine,
- Publikační typ
- časopisecké články MeSH
This paper investigates the synthesis of paramagnetic nanoparticles, which are able to bind branched chain amino acids (BCAAs)-leucine, valine, and isoleucine and, thus, serve as a tool for their isolation. Further, by this, we present an approach for encapsulation of nanoparticles into a liposome cavity resulting in a delivery system. Analyses of valine and leucine in entire complex show that 31.3% and 32.6% recoveries are reached for those amino acids. Evaluation of results shows that the success rate of delivery in Escherichia coli (E. coli) is higher in the case of BCAAs on nanoparticles entrapped in liposomes (28.7% and 34.7% for valine and leucine, respectively) when compared to nanoparticles with no liposomal envelope (18.3% and 13.7% for valine and leucine, respectively). The nanoparticles with no liposomal envelope exhibit the negative zeta potential (-9.1 ± 0.3 mV); however, their encapsulation results in a shift into positive values (range of 28.9 ± 0.4 to 33.1 ± 0.5 mV). Thus, electrostatic interactions with negatively-charged cell membranes (approx. -50 mV in the case of E. coli) leads to a better uptake of cargo. Our delivery system was finally tested with the leucine-rich antimicrobial peptide (FALALKALKKALKKLKKALKKAL) and it is shown that hemocompatibility (7.5%) and antimicrobial activity of the entire complex against E. coli, Staphylococcus aureus (S. aureus), and methicilin-resistant S. aureus (MRSA) is comparable or better than conventional penicillin antibiotics.
Zobrazit více v PubMed
Sahoo S.K., Parveen S., Panda J.J. The present and future of nanotechnology in human health care. Nanomed. Nanotechnol. Biol. Med. 2007;3:20–31. doi: 10.1016/j.nano.2006.11.008. PubMed DOI
Chun J., Seo S.W., Jung G.Y., Lee J. Easy access to efficient magnetically recyclable separation of histidine-tagged proteins using superparamagnetic nickel ferrite nanoparticle clusters. J. Mater. Chem. 2011;21:6713–6717. doi: 10.1039/c0jm04089d. DOI
Pompa P.P., Martiradonna L., Torre A.D., Sala F.D., Manna L., De Vittorio M., Calabi F., Cingolani R., Rinaldi R. Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control. Nat. Nano. 2006;1:126–130. doi: 10.1038/nnano.2006.93. PubMed DOI
Wu C.-S., Liu F.-K., Ko F.-H. Potential role of gold nanoparticles for improved analytical methods: An introduction to characterizations and applications. Anal. Bioanal. Chem. 2011;399:103–118. doi: 10.1007/s00216-010-4094-9. PubMed DOI
Liu F.-K. Analysis and applications of nanoparticles in the separation sciences: A case of gold nanoparticles. J. Chromatogr. A. 2009;1216:9034–9047. doi: 10.1016/j.chroma.2009.07.026. PubMed DOI
Pinzon-Daza M.L., Campia I., Kopecka J., Garzon R., Ghigo D., Riganti C. Nanoparticle- and liposome-carried drugs: New strategies for active targeting and drug delivery across blood-brain barrier. Current Drug Metab. 2013;14:625–640. doi: 10.2174/1389200211314060001. PubMed DOI
Chomoucka J., Drbohlavova J., Huska D., Adam V., Kizek R., Hubalek J. Magnetic nanoparticles and targeted drug delivering. Pharmacol. Res. 2010;62:144–149. doi: 10.1016/j.phrs.2010.01.014. PubMed DOI
Proud C.G. Regulation of mammalian translation factors by nutrients. Eur. J. Biochem. 2002;269:5338–5349. doi: 10.1046/j.1432-1033.2002.03292.x. PubMed DOI
Katta A., Kundla S., Kakarla S.K., Wu M.Z., Fannin J., Paturi S., Liu H., Addagarla H.S., Blough E.R. Impaired overload-induced hypertrophy is associated with diminished mtor signaling in insulin-resistant skeletal muscle of the obese zucker rat. Am. J. Physiol. Regul. Integr. Compar. Physiol. 2010;299:R1666–R1675. doi: 10.1152/ajpregu.00229.2010. PubMed DOI PMC
She P.X., Olson K.C., Kadota Y., Inukai A., Shimomura Y., Hoppel C.L., Adams S.H., Kawamata Y., Matsumoto H., Sakai R., et al. Leucine and protein metabolism in obese zucker rats. PLos ONE. 2013;8:1–19. doi: 10.1371/journal.pone.0059443. PubMed DOI PMC
Ma Q.Q., Lv Y.F., Gu Y., Dong N., Li D.S., Shan A.S. Rational design of cationic antimicrobial peptides by the tandem of leucine-rich repeat. Amino Acids. 2013;44:1215–1224. doi: 10.1007/s00726-012-1457-x. PubMed DOI
Dong N., Ma Q.Q., Shan A.S., Lv Y.F., Hu W.N., Gu Y., Li Y.Z. Strand length-dependent antimicrobial activity and membrane-active mechanism of arginine- and valine-rich beta-hairpin-like antimicrobial peptides. Antimicrob. Agents Chemother. 2012;56:2994–3003. doi: 10.1128/AAC.06327-11. PubMed DOI PMC
Pauser S., Reszka R., Wagner S., Wolf K.J., Buhr H.J., Berger G. Liposome-encapsulated superparamagnetic iron oxide particles as markers in an mri-guided search for tumor-specific drug carriers. Anti Cancer Drug Des. 1997;12:125–135. PubMed
Pauser S., Reszka R., Wagner S., Wolf K.J., Buhr H.J., Berger G. Superparamagnetic Iron Oxide Particles as Marker Substances for Searching Tumor Specific Liposomes with Magnetic Resonance Imaging. Plenum Press Div Plenum Publishing Corp; New York, NY, USA: 1997. pp. 561–568.
Bakkerwoudenberg I., Lokerse A.F., Tenkate M.T., Melissen P.M.B., Vanvianen W., Vanetten E.W.M. Liposomes as carriers of antimicrobial agents or immunomodulatory agents in the treatment of infections. Eur. J. Clin. Microbiol. Infect. Dis. 1993;12:61–67. doi: 10.1007/BF02389881. PubMed DOI
Moribe K., Maruyama K. Pharmaceutical design of the liposomal antimicrobial agents for infectious disease. Curr. Pharm. Des. 2002;8:441–454. doi: 10.2174/1381612023395853. PubMed DOI
Yang K.W., Gitter B., Ruger R., Wieland G.D., Chen M., Liu X.L., Albrecht V., Fahr A. Antimicrobial peptide-modified liposomes for bacteria targeted delivery of temoporfin in photodynamic antimicrobial chemotherapy. Photochem. Photobiol. Sci. 2011;10:1593–1601. doi: 10.1039/c1pp05100h. PubMed DOI
Goli K.K., Gera N., Liu X.M., Rao B.M., Rojas O.J., Genzer J. Generation and properties of antibacterial coatings based on electrostatic attachment of silver nanoparticles to protein-coated polypropylene fibers. ACS Appl. Mater. Interfaces. 2013;5:5298–5306. doi: 10.1021/am4011644. PubMed DOI
Miller E.L. The penicillins: A review and update. J. Midwifery Women Health. 2002;47:426–434. doi: 10.1016/S1526-9523(02)00330-6. PubMed DOI
Yao Z.W., Hu W., Yin S., Huang Z., Zhu Q., Chen J.N., Zang Y.H., Dong L., Zhang J.F. 3,3′-diindolymethane ameliorates adriamycin-induced cardiac fibrosis via activation of a brca1-dependent anti-oxidant pathway. Pharmacol. Res. 2013;70:139–146. doi: 10.1016/j.phrs.2013.01.006. PubMed DOI
Hanaor D., Michelazzi M., Leonelli C., Sorrell C.C. The effects of carboxylic acids on the aqueous dispersion and electrophoretic deposition of ZrO2. J. Eur. Ceram. Soc. 2012;32:235–244. doi: 10.1016/j.jeurceramsoc.2011.08.015. DOI
Schwegmann H., Feitz A.J., Frimmel F.H. Influence of the zeta potential on the sorption and toxicity of iron oxide nanoparticles on S. cerevisiae and E. coli. J. Colloid Interface Sci. 2010;347:43–48. doi: 10.1016/j.jcis.2010.02.028. PubMed DOI
Wu Z.J., Xiang H., Kim T., Chun M.S., Lee K. Surface properties of submicrometer silica spheres modified with aminopropyltriethoxysilane and phenyltriethoxysilane. J. Colloid Interface Sci. 2006;304:119–124. doi: 10.1016/j.jcis.2006.08.055. PubMed DOI
Rai A.K., Xu X., Lin Z.J., Rai D.K. Conformational search for zwitterionic leucine and hydrated conformers of both the canonical and zwitterionic leucine using the DFT-CPCM model. Vib. Spectrosc. 2011;56:74–81. doi: 10.1016/j.vibspec.2010.10.006. DOI
Zitka O., Cernei N., Heger Z., Matousek M., Kopel P., Kynicky J., Masarik M., Kizek R., Adam V. Microfluidic chip coupled with modified paramagnetic particles for sarcosine isolation in urine. Electrophoresis. 2013;34:2639–2647. doi: 10.1002/elps.201300114. PubMed DOI
Nguyen T., Ostergaard J., Sturup S., Gammelgaard B. Determination of platinum drug release and liposome stability in human plasma by CE-ICP-MS. Int. J. Pharm. 2013;449:95–102. doi: 10.1016/j.ijpharm.2013.03.055. PubMed DOI
Arouri A., Hansen A.H., Rasmussen T.E., Mouritsen O.G. Lipases, liposomes and lipid-prodrugs. Curr. Opin. Colloid Interfaces. 2013;18:419–431. doi: 10.1016/j.cocis.2013.06.001. DOI
Yeung T., Gilbert G.E., Shi J., Silvius J., Kapus A., Grinstein S. Membrane phosphatidylserine regulates surface charge and protein localization. Science. 2008;319:210–213. doi: 10.1126/science.1152066. PubMed DOI
Lutwyche P., Cordeiro C., Wiseman D.J., St-Louis M., Uh M., Hope M.J., Webb M.S., Finlay B.B. Intracellular delivery and antibacterial activity of gentamicin encapsulated in ph-sensitive liposomes. Antimicrob. Agents Chemother. 1998;42:2511–2520. PubMed PMC
Meng Y.S., Hou X.C., Lei J.X., Chen M.M., Cong S.C., Zhang Y.Y., Ding W.M., Li G.L., Li X.R. Multi-functional liposomes enhancing target and antibacterial immunity for antimicrobial and anti-biofilm against methicillin-resistant staphylococcus aureus. Pharm. Res. 2016;33:763–775. doi: 10.1007/s11095-015-1825-9. PubMed DOI
Campanha M.T.N., Mamizuka E.M., Carmona-Ribeiro A.M. Interactions between cationic liposomes and bacteria: The physical-chemistry of the bactericidal action. J. Lipid Res. 1999;40:1495–1500. PubMed
Nakatsuji T., Gallo R.L. Antimicrobial peptides: Old molecules with new ideas. J. Investig. Dermatol. 2012;132:887–895. doi: 10.1038/jid.2011.387. PubMed DOI PMC
Zhao J., Zhao C., Liang G.Z., Zhang M.Z., Zheng J. Engineering antimicrobial peptides with improved antimicrobial and hemolytic activities. J. Chem Inf. Model. 2013;53:3280–3296. doi: 10.1021/ci400477e. PubMed DOI
Singer A.J., Talan D.A. Management of skin abscesses in the era of methicillin-resistant Staphylococcus Aureus. N. Engl. J. Med. 2014;370:1039–1047. doi: 10.1056/NEJMra1212788. PubMed DOI
Lartigue L., Hugounenq P., Alloyeau D., Clarke S.P., Levy M., Bacri J.C., Bazzi R., Brougham D.F., Wilhelm C., Gazeau F. Cooperative organization in iron oxide multi-core nanoparticles potentiates their efficiency as heating mediators and mri contrast agents. ACS Nano. 2012;6:10935–10949. doi: 10.1021/nn304477s. PubMed DOI
Locatelli E., Gil L., Israel L.L., Passoni L., Naddaka M., Pucci A., Reese T., Gomez-Vallejo V., Milani P., Matteoli M., et al. Biocompatible nanocomposite for PET/MRI hybrid imaging. Int. J. Nanomed. 2012;7:6021–6033. PubMed PMC
Daniele M.A., Shaughnessy M.L., Roeder R., Childress A., Bandera Y.P., Foulger S. Magnetic nanoclusters exhibiting protein-activated near-infrared fluorescence. ACS Nano. 2013;7:203–213. doi: 10.1021/nn3037368. PubMed DOI
Dinu-Pirvu C., Ferdes M., Butu A., Ortan A., Ghica M.V. Physicochemical investigation of low soluble biocompounds entrapped in lipid carriers. Farmacia. 2013;61:182–192.
Zitka O., Heger Z., Kominkova M., Skalickova S., Krizkova S., Adam V., Kizek R. Preconcentration based on paramagnetic microparticles for the separation of sarcosine using hydrophilic interaction liquid chromatography coupled with coulometric detection. J. Sep. Sci. 2014;37:465–475. doi: 10.1002/jssc.201301188. PubMed DOI