Electric-field-controlled phase transition in a 2D molecular layer
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28779091
PubMed Central
PMC5544747
DOI
10.1038/s41598-017-07277-7
PII: 10.1038/s41598-017-07277-7
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Self-assembly of organic molecules is a mechanism crucial for design of molecular nanodevices. We demonstrate unprecedented control over the self-assembly, which could allow switching and patterning at scales accessible by lithography techniques. We use the scanning tunneling microscope (STM) to induce a reversible 2D-gas-solid phase transition of copper phthalocyanine molecules on technologically important silicon surface functionalized by a metal monolayer. By means of ab-initio calculations we show that the charge transfer in the system results in a dipole moment carried by the molecules. The dipole moment interacts with a non-uniform electric field of the STM tip and the interaction changes the local density of molecules. To model the transition, we perform kinetic Monte Carlo simulations which reveal that the ordered molecular structures can form even without any attractive intermolecular interaction.
Faculty of Mathematics and Physics Charles University Prague 121 16 Czech Republic
Instytut Fizyki Doswiadczalnej Universytet Wroclawski Wroclaw 50 001 Poland
Zobrazit více v PubMed
Heath JR. Molecular Electronics. Annu. Rev. Mater. Res. 2009;39:1–23. doi: 10.1146/annurev-matsci-082908-145401. DOI
Borshchev OV, Ponomarenko SA. Self-assembled organic semiconductors for monolayer field-effect transistors. Polymer Science Series C. 2014;56:32–46. doi: 10.1134/S1811238214010044. DOI
Celestin M, Krishnan S, Bhansali S, Stefanakos E, Goswami DY. A review of self-assembled monolayers as potential terahertz frequency tunnel diodes. Nano Research. 2014;7:589–625. doi: 10.1007/s12274-014-0429-8. DOI
Ravi, S. K. & Tan, S. C. Progress and perspectives in exploiting photosynthetic biomolecules for solar energy harnessing.
Sessolo M, Bolink HJ. Hybrid organic-inorganic light-emitting diodes. Advanced Materials. 2011;23:1829–1845. doi: 10.1002/adma.201004324. PubMed DOI
Suo Z, Hong W. Programmable motion and patterning of molecules on solid surfaces. Proceedings of the National Academy of Sciences of the United States of America. 2004;101:7874–7879. doi: 10.1073/pnas.0308254101. PubMed DOI PMC
Pietzsch O, et al. Current-Induced Hydrogen Tautomerization and Conductance Switching of Naphthalocyanine Molecules. Science. 2007;317:1203–1207. doi: 10.1126/science.1144366. PubMed DOI
Qiu XH, Nazin GV, Ho W. Mechanisms of reversible conformational transitions in a single molecule. Physical Review Letters. 2004;93:1–4. PubMed
Repp J, Meyer G, Olsson FE, Persson M. Controlling the charge state of individual gold adatoms. Science. 2004;305:493–495. doi: 10.1126/science.1099557. PubMed DOI
Haiss W, et al. Redox State Dependence of Single Molecule Conductivity. JACS. 2003;125:15294–15295. doi: 10.1021/ja038214e. PubMed DOI
Yongfeng W, Kröger J, Berndt R, Hofer WA. Pushing and pulling a Sn Ion through an adsorbed phthalocyanine molecule. Journal of the American Chemical Society. 2009;131:3639–3643. doi: 10.1021/ja807876c. PubMed DOI
Stróżecka, A., Soriano, M., Pascual, J. I. & Palacios, J. J. Reversible change of the spin state in a manganese phthalocyanine by coordination of co molecule. PubMed DOI
Zhang JL, et al. Reversible switching of a single-dipole molecule imbedded in two-dimensional hydrogen-bonded binary molecular networks. Journal of Physical Chemistry C. 2014;118:1712–1718. doi: 10.1021/jp408890k. DOI
Zhang JL, et al. Towards single molecule switches. Chem. Soc. Rev. 2015;44:2998. doi: 10.1039/C4CS00377B. PubMed DOI
Lörtscher, E. Wiring molecules into circuits. PubMed DOI
Cui, K. PubMed
Cometto FP, Kern K, Lingenfelder M. Local Conformational Switching of Supramolecular Networks at the Solid/Liquid Interface. ACS Nano. 2015;9:5544–5550. doi: 10.1021/acsnano.5b01658. PubMed DOI
Lei SB, et al. Electric driven molecular switching of asymmetric tris(phthalocyaninato) lutetium triple-decker complex at the liquid/solid interface. Nano Letters. 2008;8:1836–1843. doi: 10.1021/nl0803186. PubMed DOI
Zhang, X. M., Zeng, Q. D. & Wang, C. Reversible Phase Transformation at the Solid-Liquid Interface: STM Reveals. PubMed
Snegir SV, Yu P. Switching at the Nanoscale: Light- and STM-Tip-Induced Switch of a Thiolated Diarylethene Self-Assembly on Au(111) Langmuir. 2014;30:13556–13563. doi: 10.1021/la5029806. PubMed DOI
Wortmann B, et al. Reversible 2d phase transition driven by an electric field: Visualization and control on the atomic scale. Nano Letters. 2016;16:528–533. doi: 10.1021/acs.nanolett.5b04174. PubMed DOI
Matvija, P., Sobotík, P., Ošťádal, I. & Kocán, P. Diverse growth of Mn, In and Sn islands on thallium-passivated Si(111) surface.
Lee, S. S. DOI
Sakamoto, K. DOI
Papageorgiou N, et al. Physics of ultra-thin phthalocyanine films on semiconductors. Progress in Surface Science. 2005;77:139–170. doi: 10.1016/j.progsurf.2005.01.001. DOI
Rochet F, et al. Copper phthalocyanine on Si(111) − 7 × 7 and Si(001) − 2 × 1: an XPS/AES and STM study. Surface Science. 1994;319:10–20. doi: 10.1016/0039-6028(94)90565-7. DOI
Krejčí, O. DOI
Tao F, Xu GQ. Attachment chemistry of organic molecules on Si(111) − (7 × 7) Accounts of chemical research. 2004;37:882–893. doi: 10.1021/ar0400488. PubMed DOI
Gottfried, J. M. Surface chemistry of porphyrins and phthalocyanines.
Stadler, C., Hansen, S., Kröger, I., Kumpf, C. & Umbach, E. Tuning intermolecular interaction in long-range-ordered submonolayer organic films. DOI
Peisert, H., Uihlein, J., Petraki, F. & Chass, T. Charge transfer between transition metal phthalocyanines and metal substrates: The role of the transition metal. DOI
Kröger, I.
Stadtmüller B, Kröger I, Reinert F, Kumpf C. Submonolayer growth of CuPc on noble metal surfaces. Physical Review B - Condensed Matter and Materials Physics. 2011;83:085416. doi: 10.1103/PhysRevB.83.085416. DOI
Menzli, S.
Arbi I, et al. Molecular arrangement investigation of copper phthalocyanine grown on hydrogen passivated Si(111) surfaces. Applied Surface Science. 2014;305:396–401. doi: 10.1016/j.apsusc.2014.03.100. DOI
Xiao K, et al. Surface-Induced Orientation Control of CuPc Molecules for the Epitaxial Growth of Highly Ordered Organic Crystals on Graphene. JACS. 2013;135:3680–3687. doi: 10.1021/ja3125096. PubMed DOI
Floreano, L., Cossaro, A. & Gotter, R. Periodic arrays of Cu-phthalocyanine chains on Au (110). DOI
Upward MD, Beton PH, Moriarty P. Adsorption of cobalt phthalocyanine on Ag terminated Si(111) Surface Science. 1999;441:21–25. doi: 10.1016/S0039-6028(99)00778-5. DOI
Wagner SR, et al. Growth of Metal Phthalocyanine on Deactivated Semiconducting Surfaces Steered by Selective Orbital Coupling. Physical Review Letters. 2015;115:096101. doi: 10.1103/PhysRevLett.115.096101. PubMed DOI
Amin, B., Nazir, S. & Schwingenschlogl, U. Molecular distortion and charge transfer effects in ZnPc/Cu(111). PubMed PMC
Whitman, L. J., Stroscio, J. A., Dragoset, R. A. & Celotta, R. J. Manipulation of Adsorbed Atoms and Creation of New Structures on Room-Temperature Surfaces with a Scanning Tunneling Microscope. PubMed
Jiang N, et al. Diffusivity control in molecule-on-metal systems using electric fields. Nano Letters. 2010;10:1184–1188. doi: 10.1021/nl903473p. PubMed DOI
Kocán P, Sobotk P, Ošťádal I. Metallic-like thallium overlayer on a si(111) surface. Phys. Rev. B. 2011;84:233304. doi: 10.1103/PhysRevB.84.233304. DOI
Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B. 1993;47:558–561. doi: 10.1103/PhysRevB.47.558. PubMed DOI
Kresse G, Hafner J. Ab initio molecular-dynamics simulation of the liquid-metal21amorphous-semiconductor transition in germanium. Phys. Rev. B. 1994;49:14251–14269. doi: 10.1103/PhysRevB.49.14251. PubMed DOI
Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 1996;54:11169–11186. doi: 10.1103/PhysRevB.54.11169. PubMed DOI
Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996;77:3865–3868. doi: 10.1103/PhysRevLett.77.3865. PubMed DOI
Davison, E. R.
Grimme S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. Journal of Computational Chemistry. 2006;27:1787–1799. doi: 10.1002/jcc.20495. PubMed DOI
Hood ES, Toby BH, Weinberg WH. Precursor-mediated molecular chemisorption and thermal desorption: the interrelationships among energetics, kinetics, and adsorbate lattice structure. Phys. Rev. Lett. 1985;55:2437. doi: 10.1103/PhysRevLett.55.2437. PubMed DOI