Electric-field-controlled phase transition in a 2D molecular layer

. 2017 Aug 04 ; 7 (1) : 7357. [epub] 20170804

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid28779091
Odkazy

PubMed 28779091
PubMed Central PMC5544747
DOI 10.1038/s41598-017-07277-7
PII: 10.1038/s41598-017-07277-7
Knihovny.cz E-zdroje

Self-assembly of organic molecules is a mechanism crucial for design of molecular nanodevices. We demonstrate unprecedented control over the self-assembly, which could allow switching and patterning at scales accessible by lithography techniques. We use the scanning tunneling microscope (STM) to induce a reversible 2D-gas-solid phase transition of copper phthalocyanine molecules on technologically important silicon surface functionalized by a metal monolayer. By means of ab-initio calculations we show that the charge transfer in the system results in a dipole moment carried by the molecules. The dipole moment interacts with a non-uniform electric field of the STM tip and the interaction changes the local density of molecules. To model the transition, we perform kinetic Monte Carlo simulations which reveal that the ordered molecular structures can form even without any attractive intermolecular interaction.

Zobrazit více v PubMed

Heath JR. Molecular Electronics. Annu. Rev. Mater. Res. 2009;39:1–23. doi: 10.1146/annurev-matsci-082908-145401. DOI

Claridge, S. A. PubMed PMC

Borshchev OV, Ponomarenko SA. Self-assembled organic semiconductors for monolayer field-effect transistors. Polymer Science Series C. 2014;56:32–46. doi: 10.1134/S1811238214010044. DOI

Celestin M, Krishnan S, Bhansali S, Stefanakos E, Goswami DY. A review of self-assembled monolayers as potential terahertz frequency tunnel diodes. Nano Research. 2014;7:589–625. doi: 10.1007/s12274-014-0429-8. DOI

Ravi, S. K. & Tan, S. C. Progress and perspectives in exploiting photosynthetic biomolecules for solar energy harnessing.

Sessolo M, Bolink HJ. Hybrid organic-inorganic light-emitting diodes. Advanced Materials. 2011;23:1829–1845. doi: 10.1002/adma.201004324. PubMed DOI

Suo Z, Hong W. Programmable motion and patterning of molecules on solid surfaces. Proceedings of the National Academy of Sciences of the United States of America. 2004;101:7874–7879. doi: 10.1073/pnas.0308254101. PubMed DOI PMC

Pietzsch O, et al. Current-Induced Hydrogen Tautomerization and Conductance Switching of Naphthalocyanine Molecules. Science. 2007;317:1203–1207. doi: 10.1126/science.1144366. PubMed DOI

Qiu XH, Nazin GV, Ho W. Mechanisms of reversible conformational transitions in a single molecule. Physical Review Letters. 2004;93:1–4. PubMed

Repp J, Meyer G, Olsson FE, Persson M. Controlling the charge state of individual gold adatoms. Science. 2004;305:493–495. doi: 10.1126/science.1099557. PubMed DOI

Haiss W, et al. Redox State Dependence of Single Molecule Conductivity. JACS. 2003;125:15294–15295. doi: 10.1021/ja038214e. PubMed DOI

Yongfeng W, Kröger J, Berndt R, Hofer WA. Pushing and pulling a Sn Ion through an adsorbed phthalocyanine molecule. Journal of the American Chemical Society. 2009;131:3639–3643. doi: 10.1021/ja807876c. PubMed DOI

Stróżecka, A., Soriano, M., Pascual, J. I. & Palacios, J. J. Reversible change of the spin state in a manganese phthalocyanine by coordination of co molecule. PubMed DOI

Zhang JL, et al. Reversible switching of a single-dipole molecule imbedded in two-dimensional hydrogen-bonded binary molecular networks. Journal of Physical Chemistry C. 2014;118:1712–1718. doi: 10.1021/jp408890k. DOI

Zhang JL, et al. Towards single molecule switches. Chem. Soc. Rev. 2015;44:2998. doi: 10.1039/C4CS00377B. PubMed DOI

Lörtscher, E. Wiring molecules into circuits. PubMed DOI

Cui, K. PubMed

Cometto FP, Kern K, Lingenfelder M. Local Conformational Switching of Supramolecular Networks at the Solid/Liquid Interface. ACS Nano. 2015;9:5544–5550. doi: 10.1021/acsnano.5b01658. PubMed DOI

Lei SB, et al. Electric driven molecular switching of asymmetric tris(phthalocyaninato) lutetium triple-decker complex at the liquid/solid interface. Nano Letters. 2008;8:1836–1843. doi: 10.1021/nl0803186. PubMed DOI

Zhang, X. M., Zeng, Q. D. & Wang, C. Reversible Phase Transformation at the Solid-Liquid Interface: STM Reveals. PubMed

Snegir SV, Yu P. Switching at the Nanoscale: Light- and STM-Tip-Induced Switch of a Thiolated Diarylethene Self-Assembly on Au(111) Langmuir. 2014;30:13556–13563. doi: 10.1021/la5029806. PubMed DOI

Pace, G. PubMed DOI PMC

Wortmann B, et al. Reversible 2d phase transition driven by an electric field: Visualization and control on the atomic scale. Nano Letters. 2016;16:528–533. doi: 10.1021/acs.nanolett.5b04174. PubMed DOI

Zhang, Y. PubMed DOI

Matvija, P., Sobotík, P., Ošťádal, I. & Kocán, P. Diverse growth of Mn, In and Sn islands on thallium-passivated Si(111) surface.

Lee, S. S. DOI

Sakamoto, K. DOI

Papageorgiou N, et al. Physics of ultra-thin phthalocyanine films on semiconductors. Progress in Surface Science. 2005;77:139–170. doi: 10.1016/j.progsurf.2005.01.001. DOI

Rochet F, et al. Copper phthalocyanine on Si(111) − 7 × 7 and Si(001) − 2 × 1: an XPS/AES and STM study. Surface Science. 1994;319:10–20. doi: 10.1016/0039-6028(94)90565-7. DOI

Krejčí, O. DOI

Tao F, Xu GQ. Attachment chemistry of organic molecules on Si(111) − (7 × 7) Accounts of chemical research. 2004;37:882–893. doi: 10.1021/ar0400488. PubMed DOI

Gottfried, J. M. Surface chemistry of porphyrins and phthalocyanines.

Stadler, C., Hansen, S., Kröger, I., Kumpf, C. & Umbach, E. Tuning intermolecular interaction in long-range-ordered submonolayer organic films. DOI

Peisert, H., Uihlein, J., Petraki, F. & Chass, T. Charge transfer between transition metal phthalocyanines and metal substrates: The role of the transition metal. DOI

Kröger, I.

Stadtmüller B, Kröger I, Reinert F, Kumpf C. Submonolayer growth of CuPc on noble metal surfaces. Physical Review B - Condensed Matter and Materials Physics. 2011;83:085416. doi: 10.1103/PhysRevB.83.085416. DOI

Menzli, S.

Arbi I, et al. Molecular arrangement investigation of copper phthalocyanine grown on hydrogen passivated Si(111) surfaces. Applied Surface Science. 2014;305:396–401. doi: 10.1016/j.apsusc.2014.03.100. DOI

Xiao K, et al. Surface-Induced Orientation Control of CuPc Molecules for the Epitaxial Growth of Highly Ordered Organic Crystals on Graphene. JACS. 2013;135:3680–3687. doi: 10.1021/ja3125096. PubMed DOI

Floreano, L., Cossaro, A. & Gotter, R. Periodic arrays of Cu-phthalocyanine chains on Au (110). DOI

Upward MD, Beton PH, Moriarty P. Adsorption of cobalt phthalocyanine on Ag terminated Si(111) Surface Science. 1999;441:21–25. doi: 10.1016/S0039-6028(99)00778-5. DOI

Wagner SR, et al. Growth of Metal Phthalocyanine on Deactivated Semiconducting Surfaces Steered by Selective Orbital Coupling. Physical Review Letters. 2015;115:096101. doi: 10.1103/PhysRevLett.115.096101. PubMed DOI

Amin, B., Nazir, S. & Schwingenschlogl, U. Molecular distortion and charge transfer effects in ZnPc/Cu(111). PubMed PMC

Whitman, L. J., Stroscio, J. A., Dragoset, R. A. & Celotta, R. J. Manipulation of Adsorbed Atoms and Creation of New Structures on Room-Temperature Surfaces with a Scanning Tunneling Microscope. PubMed

Jiang N, et al. Diffusivity control in molecule-on-metal systems using electric fields. Nano Letters. 2010;10:1184–1188. doi: 10.1021/nl903473p. PubMed DOI

Kocán P, Sobotk P, Ošťádal I. Metallic-like thallium overlayer on a si(111) surface. Phys. Rev. B. 2011;84:233304. doi: 10.1103/PhysRevB.84.233304. DOI

Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B. 1993;47:558–561. doi: 10.1103/PhysRevB.47.558. PubMed DOI

Kresse G, Hafner J. Ab initio molecular-dynamics simulation of the liquid-metal21amorphous-semiconductor transition in germanium. Phys. Rev. B. 1994;49:14251–14269. doi: 10.1103/PhysRevB.49.14251. PubMed DOI

Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 1996;54:11169–11186. doi: 10.1103/PhysRevB.54.11169. PubMed DOI

Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996;77:3865–3868. doi: 10.1103/PhysRevLett.77.3865. PubMed DOI

Davison, E. R.

Grimme S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. Journal of Computational Chemistry. 2006;27:1787–1799. doi: 10.1002/jcc.20495. PubMed DOI

Hood ES, Toby BH, Weinberg WH. Precursor-mediated molecular chemisorption and thermal desorption: the interrelationships among energetics, kinetics, and adsorbate lattice structure. Phys. Rev. Lett. 1985;55:2437. doi: 10.1103/PhysRevLett.55.2437. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Local electronic structure of doping defects on Tl/Si(111)1x1

. 2019 Jan 28 ; 9 (1) : 779. [epub] 20190128

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...