The Impact of the Eda Pathway on Tooth Root Development

. 2017 Oct ; 96 (11) : 1290-1297. [epub] 20170816

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28813629

Grantová podpora
Wellcome Trust - United Kingdom

The Eda pathway ( Eda, Edar, Edaradd) plays an important role in tooth development, determining tooth number, crown shape, and enamel formation. Here we show that the Eda pathway also plays a key role in root development. Edar (the receptor) is expressed in Hertwig's epithelial root sheath (HERS) during root development, with mutant mice showing a high incidence of taurodontism: large pulp chambers lacking or showing delayed bifurcation or trifurcation of the roots. The mouse upper second molars in the Eda pathway mutants show the highest incidence of taurodontism, this enhanced susceptibility being matched in human patients with mutations in EDA-A1. These taurodont teeth form due to defects in the direction of extension of the HERS from the crown, associated with a more extensive area of proliferation of the neighboring root mesenchyme. In those teeth where the angle at which the HERS extends from the crown is very wide and therefore more vertical, the mutant HERSs fail to reach toward the center of the tooth in the normal furcation region, and taurodont teeth are created. The phenotype is variable, however, with milder changes in angle and proliferation leading to normal or delayed furcation. This is the first analysis of the role of Eda in the root, showing a direct role for this pathway during postnatal mouse development, and it suggests that changes in proliferation and angle of HERS may underlie taurodontism in a range of syndromes.

Zobrazit více v PubMed

Bae CH, Lee JY, Kim TH, Baek JA, Lee JC, Yang X, Taketo MM, Jiang R, Cho ES. 2013. Excessive Wnt/beta-catenin signaling disturbs tooth-root formation. J Periodontal Res. 48(4):405–410. PubMed

Charles C, Pantalacci S, Peterkova R, Tafforeau P, Laudet V, Viriot L. 2009. Effect of eda loss of function on upper jugal tooth morphology. Anat Rec (Hoboken). 292(2):299–308. PubMed

Charles C, Pantalacci S, Tafforeau P, Headon D, Laudet V, Viriot L. 2009. Distinct impacts of Eda and Edar loss of function on the mouse dentition. PLoS One. 4(4):e4985. PubMed PMC

Courtney JM, Blackburn J, Sharpe PT. 2005. The Ectodysplasin and NFkappaB signalling pathways in odontogenesis. Arch Oral Biol. 50(2):159–163. PubMed

Crawford PJ, Aldred MJ, Clarke A. 1991. Clinical and radiographic dental findings in X linked hypohidrotic ectodermal dysplasia. J Med Genet. 28(3):181–185. PubMed PMC

Gao Y, Yang G, Weng T, Du J, Wang X, Zhou J, Wang S, Yang X. 2009. Disruption of Smad4 in odontoblasts causes multiple keratocystic odontogenic tumors and tooth malformation in mice. Mol Cell Biol. 29(21):5941–5951. PubMed PMC

Grüneberg H. 1966. The molars of the tabby mouse, and a test of the “single-active X-chromosome” hypothesis. J Embryol Exp Morphol. 15(2):223–244. PubMed

Headon DJ, Emmal SA, Ferguson BM, Tucker AS, Justice MJ, Sharpe PT, Zonana J, Overbeek PA. 2001. Gene defect in ectodermal dysplasia implicates a death domain adapter in development. Nature. 414(6866):913–916. PubMed

Huang X, Xu X, Bringas P, Jr, Hung YP, Chai Y. 2010. Smad4-Shh-Nfic signaling cascade-mediated epithelial-mesenchymal interaction is crucial in regulating tooth root development. J Bone Miner Res. 25(5):1167–1178. PubMed PMC

Jafarzadeh H, Azarpazhooh A, Mayhall JT. 2008. Taurodontism: a review of the condition and endodontic treatment challenges. Int Endod J. 41(5):375–388. PubMed

Kere J, Srivastava AK, Montonen O, Zonana J, Thomas N, Ferguson B, Munoz F, Moran D, Clarke A, Baybayan P, et al. 1996. X-linked anhidrotic (hypohidrotic) ectodermal dysplasia is caused by mutation in a novel transmembrane protein. Nat Genet. 13(4):409–416. PubMed

Khan M, Seppala M, Zoupa M, Cobourne MT. 2007. Hedgehog pathway gene expression during early development of the molar tooth root in the mouse. Gene Expr Patterns. 7(3):239–243. PubMed

Kim TH, Bae CH, Lee JC, Ko SO, Yang X, Jiang R, Cho ES. 2013. β-catenin is required in odontoblasts for tooth root formation. J Dent Res. 92(3):215–221. PubMed

Kim TH, Bae CH, Yang S, Park JC, Cho ES. 2015. Nfic regulates tooth root patterning and growth. Anat Cell Biol. 48(3):188–194. PubMed PMC

Krappmann D, Wegener E, Sunami Y, Esen M, Thiel A, Mordmuller B, Scheidereit C. 2004. The IkappaB kinase complex and NF-kappaB act as master regulators of lipopolysaccharide-induced gene expression and control subordinate activation of AP-1. Mol Cell Biol. 24(14):6488–6500. PubMed PMC

Laurikkala J, Mikkola M, Mustonen T, Aberg T, Koppinen P, Pispa J, Nieminen P, Galceran J, Grosschedl R, Thesleff I. 2001. TNF signaling via the ligand-receptor pair ectodysplasin and edar controls the function of epithelial signaling centers and is regulated by Wnt and activin during tooth organogenesis. Dev Biol. 229(2):443–455. PubMed

Lexner MO, Bardow A, Hertz JM, Nielsen LA, Kreiborg S. 2007. Anomalies of tooth formation in hypohidrotic ectodermal dysplasia. Int J Paediatr Dent. 17(1):10–18. PubMed

Li J, Parada C, Chai Y. 2017. Cellular and molecular mechanisms of tooth root development. Development. 144(3):374–384. PubMed PMC

Liu Y, Feng J, Li J, Zhao H, Ho TV, Chai Y. 2015. An Nfic-hedgehog signaling cascade regulates tooth root development. Development. 142(19):3374–3382. PubMed PMC

Lohi M, Tucker AS, Sharpe PT. 2010. Expression of Axin2 indicates a role for canonical Wnt signaling in development of the crown and root during pre- and postnatal tooth development. Dev Dyn. 239(1):160–167. PubMed

Lungova V, Radlanski RJ, Tucker AS, Renz H, Misek I, Matalova E. 2011. Tooth-bone morphogenesis during postnatal stages of mouse first molar development. J Anat. 218(6):699–716. PubMed PMC

MacDonald-Jankowski DS, Li TT. 1993. Taurodontism in a young adult Chinese population. Dentomaxillofac Radiol. 22(3):140–144. PubMed

Monreal AW, Ferguson BM, Headon DJ, Street SL, Overbeek PA, Zonana J. 1999. Mutations in the human homologue of mouse dl cause autosomal recessive and dominant hypohidrotic ectodermal dysplasia. Nat Genet. 22(4):366–369. PubMed

Ohazama A, Courtney JM, Tucker AS, Naito A, Tanaka S, Inoue J, Sharpe PT. 2004. Traf6 is essential for murine tooth cusp morphogenesis. Dev Dyn. 229(1):131–135. PubMed

Peterkova R, Lesot H, Viriot L, Peterka M. 2005. The supernumerary check tooth in tabby/EDA mice—a reminiscence of the premolar in mouse ancestors. Arch Oral Biol. 50(2):219–225. PubMed

Pispa J, Jung HS, Jernvall J, Kettunen P, Mustonen T, Tabata MJ, Kere J, Thesleff I. 1999. Cusp patterning defect in Tabby mouse teeth and its partial rescue by FGF. Dev Biol. 216(2):521-534. PubMed

Prochazka J, Pantalacci S, Churava S, Rothova M, Lambert A, Lesot H, Klein O, Peterka M, Laudet V, Peterkova R. 2010. Patterning by heritage in mouse molar row development. Proc Natl Acad Sci U S A. 107(35):15497–15502. PubMed PMC

Pummila M, Fliniaux I, Jaatinen R, James MJ, Laurikkala J, Schneider P, Thesleff I, Mikkola ML. 2007. Ectodysplasin has a dual role in ectodermal organogenesis: inhibition of Bmp activity and induction of Shh expression. Development. 134(1):117–125. PubMed

Shokri A, Poorolajal J, Khajeh S, Faramarzi F, Kahnamoui HM. 2014. Prevalence of dental anomalies among 7- to 35-year-old people in Hamadan, Iran in 2012-2013 as observed using panoramic radiographs. Imaging Sci Dent. 44(1):7–13. PubMed PMC

Sohn WJ, Choi MA, Yamamoto H, Lee S, Lee Y, Jung JK, Jin MU, An CH, Jung HS, Suh JY, et al. 2014. Contribution of mesenchymal proliferation in tooth root morphogenesis. J Dent Res. 93(1):78–83. PubMed PMC

Tucker AS, Headon DJ, Schneider P, Ferguson BM, Overbeek P, Tschopp J, Sharpe PT. 2000. Edar/Eda interactions regulate enamel knot formation in tooth morphogenesis. Development. 127(21):4691–4700. PubMed

Tulensalo T, Ranta R, Kataja M. 1989. Reliability in estimating taurodontism of permanent molars from orthopantomograms. Community Dent Oral Epidemiol. 17(5):258–262. PubMed

Wells KL, Mou C, Headon DJ, Tucker AS. 2010. Recombinant EDA or Sonic Hedgehog rescue the branching defect in Ectodysplasin A pathway mutant salivary glands in vitro. Dev Dyn. 239(10):2674–2684. PubMed

Wells KL, Mou C, Headon DJ, Tucker AS. 2011. Defects and rescue of the minor salivary glands in Eda pathway mutants. Dev Biol. 349(2):137–146. PubMed

Xing X, Deng Z, Yang F, Watanabe S, Wen L, Jin Y. 2007. Determination of genes involved in the early process of molar root development initiation in rat by modified subtractive hybridization. Biochem Biophys Res Commun. 363(4):994–1000. PubMed

Yang J, Wang SK, Choi M, Reid BM, Hu Y, Lee YL, Herzog CR, Kim-Berman H, Lee M, Benke PJ, et al. 2015. Taurodontism, variations in tooth number, and misshapened crowns in Wnt10a null mice and human kindreds. Mol Genet Genomic Med. 3(1):40–58. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace