Plume Activity and Tidal Deformation on Enceladus Influenced by Faults and Variable Ice Shell Thickness
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
28816521
PubMed Central
PMC5610426
DOI
10.1089/ast.2016.1629
PII: 10.1089/ast.2016.1629
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
We investigated the effect of variations in ice shell thickness and of the tiger stripe fractures crossing Enceladus' south polar terrain on the moon's tidal deformation by performing finite element calculations in three-dimensional geometry. The combination of thinning in the polar region and the presence of faults has a synergistic effect that leads to an increase of both the displacement and stress in the south polar terrain by an order of magnitude compared to that of the traditional model with a uniform shell thickness and without faults. Assuming a simplified conductive heat transfer and neglecting the heat sources below the ice shell, we computed the global heat budget of the ice shell. For the inelastic properties of the shell described by a Maxwell viscoelastic model, we show that unrealistically low average viscosity of the order of 1013 Pa s is necessary for preserving the volume of the ocean, suggesting the important role of the heat sources in the deep interior. Similarly, low viscosity is required to predict the observed delay of the plume activity, which hints at other delaying mechanisms than just the viscoelasticity of the ice shell. The presence of faults results in large spatial and temporal heterogeneity of geysering activity compared to the traditional models without faults. Our model contributes to understanding the physical mechanisms that control the fault activity, and it provides potentially useful information for future missions that will sample the plume for evidence of life. Key Words: Enceladus-Tidal deformation-Faults-Variable ice shell thickness-Tidal heating-Plume activity and timing. Astrobiology 17, 941-954.
Charles University Faculty of Mathematics and Physics Department of Geophysics Prague Czech Republic
Mathematical Institute of Charles University Prague Czech Republic
Zobrazit více v PubMed
Abramov O. and Spencer J. (2009) Endogenic heat from Enceladus' south polar fractures: new observations, and models of conductive surface heating. Icarus 199:189–196
Alnaes M.S., Blechta J., Hake J., Johansson J., Kehlet B., Logg A., Richardson C., Ring J., Rognes M.E., and Wells G.N. (2015) The FEniCS Project version 1.5. Archive of Numerical Software 3:9–23
Barr A. and McKinnon W. (2007) Convection in Enceladus ice shell: conditions for initiation. Geophys Res Lett 34, doi:10.1029/2006GL028799 DOI
Běhounková M., Tobie G., Choblet G., and Čadek O. (2010) Coupling mantle convection and tidal dissipation: applications to Enceladus and Earth-like planets. J Geophys Res 115, doi:10.1029/2009JE003564 DOI
Běhounková M., Tobie G., Choblet G., and Čadek O. (2012) Tidally induced melting events as the origin of south-pole activity on Enceladus. Icarus 219:655–664
Běhounková M., Tobie G., Čadek O., Choblet G., Porco C., and Nimmo F. (2015) Timing of water plume eruptions on Enceladus explained by interior viscosity structure. Nat Geosci 8:601–604
Beuthe M., Rivoldini A. and Trinh A. (2016) Enceladus's and Dione's floating ice shells supported by minimum stress isostasy. Geophys Res Lett 43:10088–10096
Čadek O., Tobie G., van Hoolst T., Massé M., Choblet G., Lefèvre A., Mitri G., Baland R.-M., Běhounková M., Bourgeois O., and Trinh A. (2016) Enceladus's internal ocean and ice shell constrained from Cassini gravity, shape, and libration data. Geophys Res Lett 43:5653–5660
Čadek O., Běhounková M., Tobie G., and Choblet G., (2017) Viscoelastic relaxation of Enceladus's ice shell. Icarus 291:31–35
Carslaw H. and Jaeger J. (1959) Conduction of Heat in Solids, 2nd ed., Oxford University Press, Oxford, UK
Castillo-Rogez J., Efroimsky M., and Lainey V. (2011) The tidal history of Iapetus: spin dynamics in the light of a refined dissipation model. J Geophys Res 116, 10.1029/2010JE003664
Choblet G., Tobie G., Běhounková M., and Čadek O. (2016) Porous flow of liquid water in Enceladus rock core driven by heterogeneous tidal heating [id. 225.02]. In American Astronomical Society, Division of Planetary Sciences Meeting 48, American Astronomical Society, Washington, DC
Collins G.C. and Goodman J.C. (2007) Enceladus' south polar sea. Icarus 189:72–82
Crow-Willard E.N. and Pappalardo R.T. (2015) Structural mapping of Enceladus and implications for formation of tectonized regions. J Geophys Res 120:928–950
De La Chapelle S., Milsch H., Castelnau O., and Duval P. (1999) Compressive creep of ice containing a liquid intergranular phase: rate-controlling processes in the dislocation creep regime. Geophys Res Lett 26:251–254
Dhingra D., Hedman M.M., Clark R.N., and Nicholson P.D. (2017) Spatially resolved near infrared observations of Enceladus' tiger stripe eruptions from Cassini VIMS. Icarus 292:1–12
Duval P. (2013) Creep behavior of ice in polar ice sheets. In The Science of Solar System Ices, Astrophysics and Space Science Library Vol. 356, edited by Gudipati M.S. and Castillo-Rogez J., Springer, New York, pp 227–251
Efroimsky M. (2012) Tidal dissipation compared to seismic dissipation: in small bodies, Earths, and super-Earths. Astrophys J 746, doi:10.1088/0004-637X/746/2/150 DOI
Fuller J., Luan J., and Quataert E. (2016) Resonance locking as the source of rapid tidal migration in the Jupiter and Saturn moon systems. Mon Not R Astron Soc 458:3867–3879
Goldsby D. and Kohlstedt D. (2001) Superplastic deformation of ice: experimental observations. J Geophys Res 106:11017–11030
Han L. and Showman A.P. (2010) Coupled convection and tidal dissipation in Europa's ice shell. Icarus 207:834–844
Hedman M.M., Gosmeyer C.M., Nicholson P.D., Sotin C., Brown R.H., Clark R.N., Baines K.H., Buratti B.J., and Showalter M.R. (2013) An observed correlation between plume activity and tidal stresses on Enceladus. Nature 500:182–184 PubMed
Howett C.J.A., Spencer J.R., Pearl J., and Segura M. (2011) High heat flow from Enceladus' south polar region measured using 10–600 cm−1 Cassini/CIRS data. J Geophys Res 116, doi:10.1029/2010JE003718 DOI
Hsu H.W., Postberg F., Sekine Y., Shibuya T., Kempf S., Horanyi M., Juhasz A., Altobelli N., Suzuki K., Masaki Y., Kuwatani T., Tachibana S., Sirono S.I., Moragas-Klostermeyer G., and Srama R. (2015) Ongoing hydrothermal activities within Enceladus. Nature 519:207–210 PubMed
Hurford T.A., Helfenstein P., Hoppa G.V., Greenberg R., and Bills B.G. (2007) Eruptions arising from tidally controlled periodic openings of rifts on Enceladus. Nature 447:292–294 PubMed
Hurford T.A., Bills B.G., Helfenstein P., Greenberg R., Hoppa G.V., and Hamilton D.P. (2009) Geological implications of a physical libration on Enceladus. Icarus 203:541–552
Iess L., Stevenson D.J., Parisi M., Hemingway D., Jacobson R.A., Lunine J.I., Nimmo F., Armstrong J.W., Asmar S.W., Ducci M., and Tortora P. (2014) The gravity field and interior structure of Enceladus. Science 344:78–80 PubMed
Kamata S. and Nimmo F. (2017) Interior thermal state of Enceladus inferred from the viscoelastic state of the ice shell. Icarus 284:387–393
Kaula W. (1964) Tidal dissipation by solid friction and the resulting orbital evolution. Rev Geophys 2:661–685
Kite E.S. and Rubin A.M. (2016) Sustained eruptions on Enceladus explained by turbulent dissipation in tiger stripes. Proc Natl Acad Sci USA 113:3972–3975 PubMed PMC
Lainey V., Karatekin Ö., Desmars J., Charnoz S., Arlot J.-E., Emelyanov N., Le Poncin-Lafitte C., Mathis S., Remus F., Tobie G., and Zahn J.-P. (2012) Strong tidal dissipation in Saturn and constraints on Enceladus' thermal state from astrometry. Astrophys J 752, doi:10.1088/0004-637X/752/1/14 DOI
Lainey V., Jacobson R.A., Tajeddine R., Cooper N.J., Murray C., Robert V., Tobie G., Guillot T., Mathis S., Remus F., Desmars J., Arlot J.-E., De Cuyper J.-P., Dehant V., Pascu D., Thuillot W., Le Poncin-Lafitte C., and Zahn J.-P. (2017) New constraints on Saturn's interior from Cassini astrometric data. Icarus 281:286–296
Le Gall A., Leyrat C., Janssen M.A., Choblet G., Tobie G., Bourgeois O., Lucas A., Sotin C., Howett R., Kirk R., Lorenz R.D., West R., Stolzenbach A., Masse M., Hayes H., Bonnefoy L., Veyssiere G., and Paganelli F. (2017) Thermally anomalous features in the subsurface of Enceladus's south polar terrain. Nature Astronomy 1, doi:10.1038/s41550-017-0063 DOI
Lee S., Pappalardo R.T., and Makris N.C. (2005) Mechanics of tidally driven fractures in Europa's ice shell. Icarus 177:367–379
Martin E.S. (2016) The distribution and characterization of strike-slip faults on Enceladus. Geophys Res Lett 43:2456–2464
Matsuyama I. and Nimmo F. (2008) Tectonic patterns on reoriented and despun planetary bodies. Icarus 195:459–473
McCarthy C., and Castillo-Rogez J.C. (2013) Planetary ices: attenuation properties. In The Science of Solar System Ices, edited by Gudipati M. and Castillo-Rogez J.C., Springer, New York, pp 183–226
McKinnon W.B. (2015) Effect of Enceladus's rapid synchronous spin on interpretation of Cassini gravity. Geophys Res Lett 42:2137–2143
Meyer J. and Wisdom J. (2007) Tidal heating in Enceladus. Icarus 188:535–539
Mitri G. and Showman A.P. (2008a) A model for the temperature-dependence of tidal dissipation in convective plumes on icy satellites: implications for Europa and Enceladus. Icarus 195:758–764
Mitri G. and Showman A.P. (2008b) Thermal convection in ice-I shells of Titan and Enceladus. Icarus 193:387–396
Nimmo F. and Pappalardo R.T. (2006) Diapir-induced reorientation of Saturn's moon Enceladus. Nature 441:614–616 PubMed
Nimmo F., Bills B.G., and Thomas P.C. (2011) Geophysical implications of the long-wavelength topography of the saturnian satellites. J Geophys Res 116, doi:10.1029/2011JE003835 DOI
Nimmo F., Porco C., and Mitchell C. (2014) Tidally modulated eruptions on Enceladus: Cassini ISS observations and models. Astron J 148, doi:10.1088/0004-6256/148/3/46 DOI
O'Neill C. and Nimmo F. (2010) The role of episodic overturn in generating the surface geology and heat flow on Enceladus. Nat Geosci 3:88–91
Porco C.C., Helfenstein P., Thomas P.C., Ingersoll A.P., Wisdom J., West R., Neukum G., Denk T., Wagner R., Roatsch T., Kieffer S., Turtle E., McEwen A., Johnson T.V., Rathbun J., Veverka J., Wilson D., Perry J., Spitale J., Brahic A., Burns J.A., Del Genio A.D., Dones L., Murray C.D., and Squyres S. (2006) Cassini observes the active south pole of Enceladus. Science 311:1393–1401 PubMed
Porco C.C., DiNino D., and Nimmo F. (2014) How the geysers, tidal stresses, and thermal emission across the south polar terrain of Enceladus are related. Astron J 148, doi:10.1088/0004-6256/148/3/45 DOI
Porco C., Nimmo F., and DiNino D. (2015) Enceladus' 101 geysers: phantoms? Hardly. [abstract P13A-2118]. In AGU Fall Meeting, American Geophysical Union, Washington, DC
Postberg F., Kempf S., Schmidt J., Brilliantov N., Beinsen A., Abel B., Buck U., and Srama R. (2009) Sodium salts in E ring ice grains from an ocean below the surface of Enceladus. Nature 459:1098–1101 PubMed
Postberg F., Schmidt J., Hillier J., Kempf S., and Srama R. (2011) A salt-water reservoir as the source of a compositionally stratified plume on Enceladus. Nature 474:620–622 PubMed
Proctor T.M. (1966) Low-temperature speed of sound in single-crystal ice. J Acoust Soc Am 39:972–977
Rambaux N., Castillo-Rogez J.C., Williams J.G., and Karatekin Ö. (2010) Librational response of Enceladus. Geophys Res Lett 37, doi:10.1029/2009GL041465 DOI
Roberts J. and Nimmo F. (2008) Tidal heating and the long-term stability of a subsurface ocean on Enceladus. Icarus 194:675–689
Roberts J.H. (2015) The fluffy core of Enceladus. Icarus 258:54–66
Rozel A., Besserer J., Golabek G.J., Kaplan M., and Tackley P.J. (2014) Self-consistent generation of single-plume state for Enceladus using non-Newtonian rheology. J Geophys Res 119:416–439
Schenk P.M. and McKinnon W.B. (2009) One-hundred-km-scale basins on Enceladus: evidence for an active ice shell. Geophys Res Lett 36, doi:10.1029/2009GL039916 DOI
Schubert G., Anderson J.D., Travis B.J., and Palguta J. (2007) Enceladus: present internal structure and differentiation by early and long-term radiogenic heating. Icarus 188:345–355
Schulson E. (2001) Brittle failure of ice. Eng Fract Mech 68:1839–1887
Shoji D., Hussmann H., Sohl F., and Kurita K. (2014) Non-steady state tidal heating of Enceladus. Icarus 235:75–85
Showman A.P., Han L., and Hubbard W.B. (2013) The effect of an asymmetric core on convection in Enceladus' ice shell: implications for south polar tectonics and heat flux. Geophys Res Lett 40:5610–5614
Souček O., Hron J., Běhounková M., and Čadek O. (2016) Effect of the tiger stripes on the deformation of Saturn's moon Enceladus. Geophys Res Lett 43:7417–7423
Spencer J., Pearl J., Segura M., Flasar F., Mamoutkine A., Romani P., Buratti B.J., Hendrix A.R., Spilker L.J., and Lopes R.M. (2006) Cassini encounters Enceladus: background and the discovery of a south polar hot spot. Science 311:1401–1405 PubMed
Spencer J.R., Howett C.J.A., Verbiscer A., Hurford T.A., Segura M., and Spencer D.C. (2013) Enceladus heat flow from high spatial resolution thermal emission observations [id. EPSC2013-840]. In European Planetary Science Congress 2013
Spitale J.N., Hurford T.A., Rhoden A.R., Berkson E.E., and Platts S.S. (2015) Curtain eruptions from Enceladus' south-polar terrain. Nature 521:57–60 PubMed
Stegman D.R., Freeman J., and May D.A. (2009) Origin of ice diapirism, true polar wander, subsurface ocean, and tiger stripes of Enceladus driven by compositional convection. Icarus 202:669–680
Thomas P., Tajeddine R., Tiscareno M.S., Burns J.A., Joseph J., Loredo T.J., Helfenstein P., and Porco C. (2016) Enceladus's measured physical libration requires a global subsurface ocean. Icarus 264:37–47
Thomas P.C., Burns J.A., Helfenstein P., Squyres S., Veverka J., Porco C., Turtle E.P., McEwen A., Denk T., Giese B., Roatsch T., Johnson T.V., and Jacobson R.A. (2007) Shapes of the saturnian icy satellites and their significance. Icarus 190:573–584
Tobie G., Choblet G., and Sotin C. (2003) Tidally heated convection: constraints on Europa's ice shell thickness. J Geophys Res 108, doi:10.1029/2003JE002099 DOI
Tobie G., Mocquet A., and Sotin C. (2005) Tidal dissipation within large icy satellites: applications to Europa and Titan. Icarus 177:534–549
Tobie G., Čadek O., and Sotin C. (2008) Solid tidal friction above a liquid water reservoir as the origin of the south pole hotspot on Enceladus. Icarus 196:642–652
Travis B.J. and Schubert G. (2015) Keeping Enceladus warm. Icarus 250:32–42
Tyler R.H. (2009) Ocean tides heat Enceladus. Geophys Res Lett 36, doi:10.1029/2009GL038300 DOI
van Hoolst T., Baland R.-M., and Trinh A. (2016) The diurnal libration and interior structure of Enceladus. Icarus 277:311–318
Wahr J., Selvans Z.A., Mullen M.E., Barr A.C., Collins G.C., Selvans M.M., and Pappalardo R.T. (2009) Modeling stresses on satellites due to nonsynchronous rotation and orbital eccentricity using gravitational potential theory. Icarus 200:188–206
Waite J.H., Glein C.R., Perryman R.S., Teolis B.D., Magee B.A., Miller G., Grimes J., Perry M.E., Miller K.E., Bouquet A., Lunine J.I., Brockwell T., and Bolton S.J. (2017) Cassini finds molecular hydrogen in the Enceladus plume: evidence for hydrothermal processes. Science 356:155–159 PubMed