Humans with latent toxoplasmosis display altered reward modulation of cognitive control
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28860577
PubMed Central
PMC5579228
DOI
10.1038/s41598-017-10926-6
PII: 10.1038/s41598-017-10926-6
Knihovny.cz E-zdroje
- MeSH
- dopamin metabolismus MeSH
- dospělí MeSH
- evokované potenciály MeSH
- kognice fyziologie MeSH
- lidé MeSH
- mladý dospělý MeSH
- odměna * MeSH
- protilátky protozoální metabolismus MeSH
- sluchové korové centrum MeSH
- studie případů a kontrol MeSH
- Toxoplasma imunologie MeSH
- toxoplazmóza metabolismus psychologie MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- dopamin MeSH
- protilátky protozoální MeSH
Latent infection with Toxoplasma gondii has repeatedly been shown to be associated with behavioral changes that are commonly attributed to a presumed increase in dopaminergic signaling. Yet, virtually nothing is known about its effects on dopamine-driven reward processing. We therefore assessed behavior and event-related potentials in individuals with vs. without latent toxoplasmosis performing a rewarded control task. The data show that otherwise healthy young adults with latent toxoplasmosis show a greatly diminished response to monetary rewards as compared to their non-infected counterparts. While this selective effect eliminated a toxoplasmosis-induced speed advantage previously observed for non-rewarded behavior, Toxo-positive subjects could still be demonstrated to be superior to Toxo-negative subjects with respect to response accuracy. Event-related potential (ERP) and source localization analyses revealed that this advantage during rewarded behavior was based on increased allocation of processing resources reflected by larger visual late positive component (LPC) amplitudes and associated activity changes in the right temporo-parietal junction (BA40) and left auditory cortex (BA41). Taken together, individuals with latent toxoplasmosis show superior behavioral performance in challenging cognitive control situations but may at the same time have a reduced sensitivity towards motivational effects of rewards, which might be explained by the presumed increase in dopamine.
Zobrazit více v PubMed
Boothroyd JC, Grigg ME. Population biology of Toxoplasma gondii and its relevance to human infection: do different strains cause different disease? Curr. Opin. Microbiol. 2002;5:438–442. doi: 10.1016/S1369-5274(02)00349-1. PubMed DOI
Flegr J. How and why Toxoplasma makes us crazy. Trends Parasitol. 2013;29:156–163. doi: 10.1016/j.pt.2013.01.007. PubMed DOI
Foroutan-Rad M, et al. Toxoplasmosis in Blood Donors: A Systematic Review and Meta-Analysis. Transfus. Med. Rev. 2016;30:116–122. doi: 10.1016/j.tmrv.2016.03.002. PubMed DOI
Webster JP. The effect of Toxoplasma gondii on animal behavior: playing cat and mouse. Schizophr. Bull. 2007;33:752–756. doi: 10.1093/schbul/sbl073. PubMed DOI PMC
Kamerkar, S. & Davis, P. H. Toxoplasma on the brain: understanding host-pathogen interactions in chronic CNS infection. J. Parasitol. Res. 2012, 589295 (2012). PubMed PMC
Parlog A, Schlüter D, Dunay IR. Toxoplasma gondii-induced neuronal alterations. Parasite Immunol. 2015;37:159–170. doi: 10.1111/pim.12157. PubMed DOI
Beste C, Getzmann S, Gajewski PD, Golka K, Falkenstein M. Latent Toxoplasma gondii infection leads to deficits in goal-directed behavior in healthy elderly. Neurobiol. Aging. 2014;35:1037–1044. doi: 10.1016/j.neurobiolaging.2013.11.012. PubMed DOI
McConkey GA, Martin HL, Bristow GC, Webster JP. Toxoplasma gondii infection and behaviour - location, location, location? J. Exp. Biol. 2013;216:113–119. doi: 10.1242/jeb.074153. PubMed DOI PMC
Stock AKH, von Heinegg E, Köhling HL, Beste C. Latent Toxoplasma gondii infection leads to improved action control. Brain. Behav. Immun. 2014;37:103–108. doi: 10.1016/j.bbi.2013.11.004. PubMed DOI
Webster JP, Kaushik M, Bristow GC, McConkey GA. Toxoplasma gondii infection, from predation to schizophrenia: can animal behaviour help us understand human behaviour? J. Exp. Biol. 2013;216:99–112. doi: 10.1242/jeb.074716. PubMed DOI PMC
Tenter AM, Heckeroth AR, Weiss LM. Toxoplasma gondii: from animals to humans. Int. J. Parasitol. 2000;30:1217–1258. doi: 10.1016/S0020-7519(00)00124-7. PubMed DOI PMC
Moore J. Altered Behavioural Responses in Intermediate Hosts–An Acanthoceptalan Parasite Strategy. Am. Nat. 1984;123:572–577. doi: 10.1086/284224. DOI
Webster JP. Rats, cats, people and parasites: the impact of latent toxoplasmosis on behaviour. Microbes Infect. Inst. Pasteur. 2001;3:1037–1045. doi: 10.1016/S1286-4579(01)01459-9. PubMed DOI
Berdoy M, Webster JP, Macdonald DW. Fatal attraction in rats infected with Toxoplasma gondii. Proc. Biol. Sci. 2000;267:1591–1594. doi: 10.1098/rspb.2000.1182. PubMed DOI PMC
Vyas A, Kim S-K, Giacomini N, Boothroyd JC, Sapolsky RM. Behavioral changes induced by Toxoplasma infection of rodents are highly specific to aversion of cat odors. Proc. Natl. Acad. Sci. USA. 2007;104:6442–6447. doi: 10.1073/pnas.0608310104. PubMed DOI PMC
Martin HL, et al. Effect of parasitic infection on dopamine biosynthesis in dopaminergic cells. Neuroscience. 2015;306:50–62. doi: 10.1016/j.neuroscience.2015.08.005. PubMed DOI PMC
Prandovszky E, et al. The neurotropic parasite Toxoplasma gondii increases dopamine metabolism. PloS One. 2011;6 doi: 10.1371/journal.pone.0023866. PubMed DOI PMC
Flegr J. Schizophrenia and Toxoplasma gondii: an undervalued association? Expert Rev. Anti Infect. Ther. 2015;13:817–820. doi: 10.1586/14787210.2015.1051033. PubMed DOI
Horacek J, et al. Latent toxoplasmosis reduces gray matter density in schizophrenia but not in controls: voxel-based-morphometry (VBM) study. World J. Biol. Psychiatry. 2012;13:501–509. doi: 10.3109/15622975.2011.573809. PubMed DOI
Xiao J, et al. Behavioral Abnormalities in a Mouse Model of Chronic Toxoplasmosis Are Associated with MAG1 Antibody Levels and Cyst Burden. PLoS Negl. Trop. Dis. 2016;10 doi: 10.1371/journal.pntd.0004674. PubMed DOI PMC
Schaeffer M, et al. Dynamic imaging of T cell-parasite interactions in the brains of mice chronically infected with Toxoplasma gondii. J. Immunol. Baltim. Md 1950. 2009;182:6379–6393. PubMed
Schlüter D, Deckert M, Hof H, Frei K. Toxoplasma gondii infection of neurons induces neuronal cytokine and chemokine production, but gamma interferon- and tumor necrosis factor-stimulated neurons fail to inhibit the invasion and growth of T. gondii. Infect. Immun. 2001;69:7889–7893. doi: 10.1128/IAI.69.12.7889-7893.2001. PubMed DOI PMC
Henriquez SA, Brett R, Alexander J, Pratt J, Roberts CW. Neuropsychiatric disease and Toxoplasma gondii infection. Neuroimmunomodulation. 2009;16:122–133. doi: 10.1159/000180267. PubMed DOI
Robert-Gangneux F, Dardé M-L. Epidemiology of and diagnostic strategies for toxoplasmosis. Clin. Microbiol. Rev. 2012;25:264–296. doi: 10.1128/CMR.05013-11. PubMed DOI PMC
Iversen, L. L. Dopamine Handbook. (Oxford University Press, (2010).
Gajewski PD, Falkenstein M, Hengstler JG, Golka K. Toxoplasma gondii impairs memory in infected seniors. Brain. Behav. Immun. 2014;36:193–199. doi: 10.1016/j.bbi.2013.11.019. PubMed DOI
Yildiz A, Chmielewski W, Beste C. Dual-task performance is differentially modulated by rewards and punishments. Behav. Brain Res. 2013;250:304–307. doi: 10.1016/j.bbr.2013.05.010. PubMed DOI
Petruo VA, Stock A-K, Münchau A, Beste C. A systems neurophysiology approach to voluntary event coding. NeuroImage. 2016;135:324–332. doi: 10.1016/j.neuroimage.2016.05.007. PubMed DOI
Zhang, R., Stock, A.-K. & Beste, C. The neurophysiological basis of reward effects on backward inhibition processes. NeuroImage, doi:10.1016/j.neuroimage.2016.05.080 (2016). PubMed
Tan D, Vyas A. Toxoplasma gondii infection and testosterone congruently increase tolerance of male rats for risk of reward forfeiture. Horm. Behav. 2016;79:37–44. doi: 10.1016/j.yhbeh.2016.01.003. PubMed DOI
Golcu D, Gebre RZ, Sapolsky RM. Toxoplasma gondii influences aversive behaviors of female rats in an estrus cycle dependent manner. Physiol. Behav. 2014;135:98–103. doi: 10.1016/j.physbeh.2014.05.036. PubMed DOI PMC
Tan D, et al. Infection of male rats with Toxoplasma gondii results in enhanced delay aversion and neural changes in the nucleus accumbens core. Proc. Biol. Sci. 2015;282 doi: 10.1098/rspb.2015.0042. PubMed DOI PMC
Cook TB, et al. ‘Latent’ infection with Toxoplasma gondii: association with trait aggression and impulsivity in healthy adults. J. Psychiatr. Res. 2015;60:87–94. doi: 10.1016/j.jpsychires.2014.09.019. PubMed DOI
Sutterland AL, et al. Beyond the association. Toxoplasma gondii in schizophrenia, bipolar disorder, and addiction: systematic review and meta-analysis. Acta Psychiatr. Scand. 2015;132:161–179. doi: 10.1111/acps.12423. PubMed DOI
Schultz W. Dopamine reward prediction error coding. Dialogues Clin. Neurosci. 2016;18:23–32. PubMed PMC
Gohil K, Dippel G, Beste C. Questioning the role of the frontopolar cortex in multi-component behavior–a TMS/EEG study. Sci. Rep. 2016;6 doi: 10.1038/srep22317. PubMed DOI PMC
Gohil K, Hahne A, Beste C. Improvements of sensorimotor processes during action cascading associated with changes in sensory processing architecture-insights from sensory deprivation. Sci. Rep. 2016;6 doi: 10.1038/srep28259. PubMed DOI PMC
Mückschel M, Stock A-K, Beste C. Psychophysiological mechanisms of interindividual differences in goal activation modes during action cascading. Cereb. Cortex N. Y. N 1991. 2014;24:2120–2129. PubMed
Verleger R, Jaśkowski P, Wascher E. Evidence for an integrative role of P3b in linking reaction to perception. J. Psychophysiol. 2005;19:165–181. doi: 10.1027/0269-8803.19.3.165. DOI
Stock A-K, Arning L, Epplen JT, Beste C. DRD1 and DRD2 Genotypes Modulate Processing Modes of Goal Activation Processes during Action Cascading. J. Neurosci. 2014;34:5335–5341. doi: 10.1523/JNEUROSCI.5140-13.2014. PubMed DOI PMC
Luck SJ, Woodman GF, Vogel EK. Event-related potential studies of attention. Trends Cogn. Sci. 2000;4:432–440. doi: 10.1016/S1364-6613(00)01545-X. PubMed DOI
Beste C, Baune BT, Falkenstein M, Konrad C. Variations in the TNF-α gene (TNF-α −308G → A) affect attention and action selection mechanisms in a dissociated fashion. J. Neurophysiol. 2010;104:2523–2531. doi: 10.1152/jn.00561.2010. PubMed DOI
Gajewski PD, Hengstler JG, Golka K, Falkenstein M, Beste C. The functional tumor necrosis factor-α (308A/G) polymorphism modulates attentional selection in elderly individuals. Neurobiol. Aging. 2013;34:2694.e1–2694.e12. doi: 10.1016/j.neurobiolaging.2013.04.017. PubMed DOI
Yildiz A, et al. Feeling safe in the plane: neural mechanisms underlying superior action control in airplane pilot trainees–a combined EEG/MRS study. Hum. Brain Mapp. 2014;35:5040–5051. doi: 10.1002/hbm.22530. PubMed DOI PMC
Cuthbert BN, Schupp HT, Bradley MM, Birbaumer N, Lang PJ. Brain potentials in affective picture processing: covariation with autonomic arousal and affective report. Biol. Psychol. 2000;52:95–111. doi: 10.1016/S0301-0511(99)00044-7. PubMed DOI
Schupp HT, et al. Affective picture processing: the late positive potential is modulated by motivational relevance. Psychophysiology. 2000;37:257–261. doi: 10.1111/1469-8986.3720257. PubMed DOI
Furley, P., Schnuerch, R. & Gibbons, H. The winner takes it all: Event-related brain potentials reveal enhanced motivated attention toward athletes’ nonverbal signals of leading. Soc. Neurosci., doi:10.1080/17470919.2016.1182586 1–10 (2016). PubMed
Verbruggen F, Schneider DW, Logan GD. How to stop and change a response: the role of goal activation in multitasking. J. Exp. Psychol. Hum. Percept. Perform. 2008;34:1212–1228. doi: 10.1037/0096-1523.34.5.1212. PubMed DOI
Faul F, Erdfelder E, Lang A-G, Buchner A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods. 2007;39:175–191. doi: 10.3758/BF03193146. PubMed DOI
Henrickson KJ. Parainfluenza viruses. Clin. Microbiol. Rev. 2003;16:242–264. doi: 10.1128/CMR.16.2.242-264.2003. PubMed DOI PMC
Getzmann, S. & Wascher, E. Visually guided auditory attention in a dynamic ‘cocktail-party’ speech perception task: ERP evidence for age-related differences. Hear. Res. doi:10.1016/j.heares.2016.11.001 (2016). PubMed
Davidson GD, Pitts MA. Auditory event-related potentials associated with perceptual reversals of bistable pitch motion. Front. Hum. Neurosci. 2014;8 doi: 10.3389/fnhum.2014.00572. PubMed DOI PMC
Kaganovich N, Schumaker J, Rowland C. Atypical audiovisual word processing in school-age children with a history of specific language impairment: an event-related potential study. J. Neurodev. Disord. 2016;8 doi: 10.1186/s11689-016-9168-3. PubMed DOI PMC
Donaldson PH, Rinehart NJ, Enticott PG. Noninvasive stimulation of the temporoparietal junction: A systematic review. Neurosci. Biobehav. Rev. 2015;55:547–572. doi: 10.1016/j.neubiorev.2015.05.017. PubMed DOI
Platz T, Schüttauf J, Aschenbach J, Mengdehl C, Lotze M. Effects of inhibitory theta burst TMS to different brain sites involved in visuospatial attention - a combined neuronavigated cTBS and behavioural study. Restor. Neurol. Neurosci. 2016;34:271–285. PubMed
Webb TW, Igelström KM, Schurger A, Graziano MSA. Cortical networks involved in visual awareness independent of visual attention. Proc. Natl. Acad. Sci. USA. 2016;113:13923–13928. doi: 10.1073/pnas.1611505113. PubMed DOI PMC
Collette F, et al. Involvement of both prefrontal and inferior parietal cortex in dual-task performance. Brain Res. Cogn. Brain Res. 2005;24:237–251. doi: 10.1016/j.cogbrainres.2005.01.023. PubMed DOI
Geng JJ, Vossel S. Re-evaluating the role of TPJ in attentional control: contextual updating? Neurosci. Biobehav. Rev. 2013;37:2608–2620. doi: 10.1016/j.neubiorev.2013.08.010. PubMed DOI PMC
Pitts MA, Britz J. Insights from intermittent binocular rivalry and EEG. Front. Hum. Neurosci. 2011;5 doi: 10.3389/fnhum.2011.00107. PubMed DOI PMC
Plack CJ, Barker D, Hall DA. Pitch coding and pitch processing in the human brain. Hear. Res. 2014;307:53–64. doi: 10.1016/j.heares.2013.07.020. PubMed DOI
Wang X, Walker KMM. Neural mechanisms for the abstraction and use of pitch information in auditory cortex. J. Neurosci. Off. J. Soc. Neurosci. 2012;32:13339–13342. doi: 10.1523/JNEUROSCI.3814-12.2012. PubMed DOI PMC
Dodds CM, Morein-Zamir S, Robbins TW. Dissociating inhibition, attention, and response control in the frontoparietal network using functional magnetic resonance imaging. Cereb. Cortex N. Y. N 1991. 2011;21:1155–1165. PubMed PMC
Hampshire A, Chamberlain SR, Monti MM, Duncan J, Owen AM. The role of the right inferior frontal gyrus: inhibition and attentional control. NeuroImage. 2010;50:1313–1319. doi: 10.1016/j.neuroimage.2009.12.109. PubMed DOI PMC
Verbruggen F, Stevens T, Chambers CD. Proactive and reactive stopping when distracted: an attentional account. J. Exp. Psychol. Hum. Percept. Perform. 2014;40:1295–1300. doi: 10.1037/a0036542. PubMed DOI PMC
Mückschel M, Stock A-K, Beste C. Different strategies, but indifferent strategy adaptation during action cascading. Sci. Rep. 2015;5 doi: 10.1038/srep09992. PubMed DOI PMC
Pitts MA, Gavin WJ, Nerger JL. Early top-down influences on bistable perception revealed by event-related potentials. Brain Cogn. 2008;67:11–24. doi: 10.1016/j.bandc.2007.10.004. PubMed DOI
Schacht A, Sommer W. Emotions in word and face processing: early and late cortical responses. Brain Cogn. 2009;69:538–550. doi: 10.1016/j.bandc.2008.11.005. PubMed DOI
Bayer, M. & Schacht, A. Event-related brain responses to emotional words, pictures, and faces – a cross-domain comparison. Front. Psychol. 5, (2014). PubMed PMC
Hinojosa JA, Carretié L, Valcárcel MA, Méndez-Bértolo C, Pozo MA. Electrophysiological differences in the processing of affective information in words and pictures. Cogn. Affect. Behav. Neurosci. 2009;9:173–189. doi: 10.3758/CABN.9.2.173. PubMed DOI
Valdés-Conroy B, Aguado L, Fernández-Cahill M, Romero-Ferreiro V, Diéguez-Risco T. Following the time course of face gender and expression processing: a task-dependent ERP study. Int. J. Psychophysiol. Off. J. Int. Organ. Psychophysiol. 2014;92:59–66. PubMed
Pascual-Marqui RD. Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find. Exp. Clin. Pharmacol. 2002;24(Suppl D):5–12. PubMed
Marco-Pallarés J, Grau C, Ruffini G. Combined ICA-LORETA analysis of mismatch negativity. NeuroImage. 2005;25:471–477. doi: 10.1016/j.neuroimage.2004.11.028. PubMed DOI
Sekihara K, Sahani M, Nagarajan SS. Localization bias and spatial resolution of adaptive and non-adaptive spatial filters for MEG source reconstruction. NeuroImage. 2005;25:1056–1067. doi: 10.1016/j.neuroimage.2004.11.051. PubMed DOI PMC
Mazziotta J, et al. A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM) Philos. Trans. R. Soc. Lond. Ser. B. 2001;356:1293–1322. doi: 10.1098/rstb.2001.0915. PubMed DOI PMC
Dippel G, Beste C. A causal role of the right inferior frontal cortex in implementing strategies for multi-component behaviour. Nat. Commun. 2015;6 doi: 10.1038/ncomms7587. PubMed DOI