Insertion of the voltage-sensitive domain into circularly permuted red fluorescent protein as a design for genetically encoded voltage sensor
Language English Country United States Media electronic-ecollection
Document type Journal Article
Grant support
R01 DC005259
NIDCD NIH HHS - United States
R56 DC005259
NIDCD NIH HHS - United States
PubMed
28863184
PubMed Central
PMC5580962
DOI
10.1371/journal.pone.0184225
PII: PONE-D-17-09850
Knihovny.cz E-resources
- MeSH
- Biosensing Techniques methods MeSH
- Red Fluorescent Protein MeSH
- Electrophysiological Phenomena MeSH
- Fluorescent Dyes metabolism MeSH
- HEK293 Cells MeSH
- Rats MeSH
- Humans MeSH
- Luminescent Proteins chemistry MeSH
- Cell Line, Tumor MeSH
- Protein Domains MeSH
- Protein Engineering methods MeSH
- Fluorescence Resonance Energy Transfer methods MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Fluorescent Dyes MeSH
- Luminescent Proteins MeSH
Visualization of electrical activity in living cells represents an important challenge in context of basic neurophysiological studies. Here we report a new voltage sensitive fluorescent indicator which response could be detected by fluorescence monitoring in a single red channel. To the best of our knowledge, this is the first fluorescent protein-based voltage sensor which uses insertion-into-circular permutant topology to provide an efficient interaction between sensitive and reporter domains. Its fluorescent core originates from red fluorescent protein (FP) FusionRed, which has optimal spectral characteristics to be used in whole body imaging techniques. Indicators using the same domain topology could become a new perspective for the FP-based voltage sensors that are traditionally based on Förster resonance energy transfer (FRET).
Center for Functional Connectomics Korea Institute of Science and Technology Seoul Korea
Central European Institute of Technology Masaryk University Brno Czech Republic
Institute of Higher Nervous Activity and Neurophysiology Moscow Russian Federation
Nizhny Novgorod State Medical Academy Nizhny Novgorod Russia
Pirogov Russian National Research Medical University Moscow Russia
Shemyakin Ovchinnikov Institute of Bioorganic Chemistry Moscow Russian Federation
See more in PubMed
Abdelfattah AS, Farhi SL, Zhao Y, Brinks D, Zou P, Ruangkittisakul A, et al. A Bright and Fast Red Fluorescent Protein Voltage Indicator That Reports Neuronal Activity in Organotypic Brain Slices. J Neurosci. 2016;36: 2458–72. doi: 10.1523/JNEUROSCI.3484-15.2016 PubMed DOI PMC
Kaestner L, Tian Q, Kaiser E, Xian W, Müller A, Oberhofer M, et al. Genetically Encoded Voltage Indicators in Circulation Research. Int J Mol Sci. 2015;16: 21626–21642. doi: 10.3390/ijms160921626 PubMed DOI PMC
Storace D, Sepehri Rad M, Kang BE, Cohen LB, Hughes T, Baker BJ. Toward Better Genetically Encoded Sensors of Membrane Potential. Trends Neurosci. Elsevier Ltd; 2016;39: 277–289. doi: 10.1016/j.tins.2016.02.005 PubMed DOI PMC
Siegel MS, Isacoff EY. A Genetically Encoded Optical Probe of Membrane Voltage. Neuron. 1997;19: 735–741. PubMed
Ataka K, Pieribone V. A genetically targetable fluorescent probe of channel gating with rapid kinetics. Biophys J. 2002;82(1 Pt 1):509–16. doi: 10.1016/S0006-3495(02)75415-5 PubMed DOI PMC
Hochbaum DR, Zhao Y, Farhi SL, Klapoetke N, Werley CA, Kapoor V, et al. All-optical electrophysiology in mammalian neurons using engineered microbial rhodopsins. Nat Methods. 2014;11: 825–33. doi: 10.1038/nmeth.3000 PubMed DOI PMC
Gong Y, Huang C, Li JZ, Grewe BF, Zhang Y, Eismann S, et al. High-speed recording of neural spikes in awake mice and flies with a fluorescent voltage sensor. Sciencexpress. 2015;350: 1–11. doi: 10.1126/science.aab0810 PubMed DOI PMC
Gautam SG, Perron A, Mutoh H, Knöpfel T. Exploration of Fluorescent Protein Voltage Probes Based on Circularly Permuted Fluorescent Proteins. Front Neuroeng. Frontiers Research Foundation; 2009;2: 8 doi: 10.3389/neuro.16.014.2009 PubMed DOI PMC
St-Pierre F, Marshall JD, Yang Y, Gong Y, Schnitzer MJ, Lin MZ. High-fidelity optical reporting of neuronal electrical activity with an ultrafast fluorescent voltage sensor. Nat Neurosci. Nature Research; 2014;17: 884–889. doi: 10.1038/nn.3709 PubMed DOI PMC
Sakai R, Repunte-Canonigo V, Raj CD, Knopfel T. Design and characterization of a DNA-encoded, voltage-sensitive fluorescent protein. Eur J Neurosci. 2001;13: 2314–2318. doi: 10.1046/j.0953-816x.2001.01617.x PubMed DOI
Tsutsui H, Karasawa S, Okamura Y, Miyawaki A. Improving membrane voltage measurements using FRET with new fluorescent proteins. Nat Methods. Nature Publishing Group; 2008;5: 683–5. doi: 10.1038/nmeth.1235 PubMed DOI
Akemann W, Mutoh H, Perron A, Park YK, Iwamoto Y, Knöpfel T. Imaging neural circuit dynamics with a voltage-sensitive fluorescent protein. J Neurophysiol. 2012;108: 2323–37. doi: 10.1152/jn.00452.2012 PubMed DOI
Mutoh H, Perron A, Dimitrov D, Iwamoto Y, Akemann W, Chudakov DM, et al. Spectrally-resolved response properties of the three most advanced FRET based fluorescent protein voltage probes. PLoS One. 2009;4: 1–5. doi: 10.1371/journal.pone.0004555 PubMed DOI PMC
Perron A, Mutoh H, Akemann W, Gautam SG, Dimitrov D, Iwamoto Y, et al. Second and third generation voltage-sensitive fluorescent proteins for monitoring membrane potential. Front Mol Neurosci. 2009;2: 5 doi: 10.3389/neuro.02.005.2009 PubMed DOI PMC
Baird GS, Zacharias DA, Tsien RY. Circular permutation and receptor insertion within green fluorescent proteins. Proc Natl Acad Sci U S A. 1999;96: 11241–11246. doi: 10.1073/pnas.96.20.11241 PubMed DOI PMC
Mishina Y, Mutoh H, Knöpfel T. Transfer of Kv3.1 voltage sensor features to the isolated Ci-VSP voltage-sensing domain. Biophys J. 2012;103: 669–76. doi: 10.1016/j.bpj.2012.07.031 PubMed DOI PMC
Russell WC, Graham FL, Smiley J, Nairn R. Characteristics of a Human Cell Line Transformed by DNA from Human Adenovirus Type 5. J Gen Virol. 1977;36: 59–72. doi: 10.1099/0022-1317-36-1-59 PubMed DOI
Greene LA, Tischler AS. Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci U S A. 1976;73: 2424–8. PubMed PMC
Jin L, Han Z, Platisa J, Wooltorton JR, Cohen LB, Pieribone VA. Single action potentials and subthreshold electrical events imaged in neurons with a fluorescent protein voltage probe. Neuron. Elsevier Inc.; 2012;75: 779–85. doi: 10.1016/j.neuron.2012.06.040 PubMed DOI PMC
Sung U, Sepehri-Rad M, Piao HH, Jin L, Hughes T, Cohen LB, et al. Developing Fast Fluorescent Protein Voltage Sensors by Optimizing FRET Interactions. PLoS One. Public Library of Science; 2015;10: e0141585 doi: 10.1371/journal.pone.0141585 PubMed DOI PMC
Shemiakina II, Ermakova G V, Cranfill PJ, Baird MA, Evans RA, Souslova EA, et al. A monomeric red fluorescent protein with low cytotoxicity. Nat Commun. Nature Publishing Group; 2012;3: 1204 doi: 10.1038/ncomms2208 PubMed DOI
Pletnev S, Shcherbo D, Chudakov DM, Pletneva N, Merzlyak EM, Wlodawer A, et al. A crystallographic study of bright far-red fluorescent protein mKate reveals pH-induced cis-trans isomerization of the chromophore. J Biol Chem. 2008;283: 28980–7. doi: 10.1074/jbc.M800599200 PubMed DOI PMC
Shui B, Wang Q, Lee F, Byrnes LJ, Chudakov DM, Lukyanov SA, et al. Circular permutation of red fluorescent proteins. PLoS One. 2011;6: e20505 doi: 10.1371/journal.pone.0020505 PubMed DOI PMC
Kerppola TK. Bimolecular fluorescence complementation (BiFC) analysis as a probe of protein interactions in living cells. Annu Rev Biophys. 2008;37: 465–87. PubMed PMC
Landschulz WH, Johnson PF, McKnight SL. The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science. 1988;240: 1759–1764. doi: 10.1126/science.3289117 PubMed DOI
Hu C-D, Chinenov Y, Kerppola TK. Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation. Mol Cell. 2002;9: 789–98. PubMed