• This record comes from PubMed

Insertion of the voltage-sensitive domain into circularly permuted red fluorescent protein as a design for genetically encoded voltage sensor

. 2017 ; 12 (9) : e0184225. [epub] 20170901

Language English Country United States Media electronic-ecollection

Document type Journal Article

Grant support
R01 DC005259 NIDCD NIH HHS - United States
R56 DC005259 NIDCD NIH HHS - United States

Visualization of electrical activity in living cells represents an important challenge in context of basic neurophysiological studies. Here we report a new voltage sensitive fluorescent indicator which response could be detected by fluorescence monitoring in a single red channel. To the best of our knowledge, this is the first fluorescent protein-based voltage sensor which uses insertion-into-circular permutant topology to provide an efficient interaction between sensitive and reporter domains. Its fluorescent core originates from red fluorescent protein (FP) FusionRed, which has optimal spectral characteristics to be used in whole body imaging techniques. Indicators using the same domain topology could become a new perspective for the FP-based voltage sensors that are traditionally based on Förster resonance energy transfer (FRET).

See more in PubMed

Abdelfattah AS, Farhi SL, Zhao Y, Brinks D, Zou P, Ruangkittisakul A, et al. A Bright and Fast Red Fluorescent Protein Voltage Indicator That Reports Neuronal Activity in Organotypic Brain Slices. J Neurosci. 2016;36: 2458–72. doi: 10.1523/JNEUROSCI.3484-15.2016 PubMed DOI PMC

Kaestner L, Tian Q, Kaiser E, Xian W, Müller A, Oberhofer M, et al. Genetically Encoded Voltage Indicators in Circulation Research. Int J Mol Sci. 2015;16: 21626–21642. doi: 10.3390/ijms160921626 PubMed DOI PMC

Storace D, Sepehri Rad M, Kang BE, Cohen LB, Hughes T, Baker BJ. Toward Better Genetically Encoded Sensors of Membrane Potential. Trends Neurosci. Elsevier Ltd; 2016;39: 277–289. doi: 10.1016/j.tins.2016.02.005 PubMed DOI PMC

Siegel MS, Isacoff EY. A Genetically Encoded Optical Probe of Membrane Voltage. Neuron. 1997;19: 735–741. PubMed

Ataka K, Pieribone V. A genetically targetable fluorescent probe of channel gating with rapid kinetics. Biophys J. 2002;82(1 Pt 1):509–16. doi: 10.1016/S0006-3495(02)75415-5 PubMed DOI PMC

Hochbaum DR, Zhao Y, Farhi SL, Klapoetke N, Werley CA, Kapoor V, et al. All-optical electrophysiology in mammalian neurons using engineered microbial rhodopsins. Nat Methods. 2014;11: 825–33. doi: 10.1038/nmeth.3000 PubMed DOI PMC

Gong Y, Huang C, Li JZ, Grewe BF, Zhang Y, Eismann S, et al. High-speed recording of neural spikes in awake mice and flies with a fluorescent voltage sensor. Sciencexpress. 2015;350: 1–11. doi: 10.1126/science.aab0810 PubMed DOI PMC

Gautam SG, Perron A, Mutoh H, Knöpfel T. Exploration of Fluorescent Protein Voltage Probes Based on Circularly Permuted Fluorescent Proteins. Front Neuroeng. Frontiers Research Foundation; 2009;2: 8 doi: 10.3389/neuro.16.014.2009 PubMed DOI PMC

St-Pierre F, Marshall JD, Yang Y, Gong Y, Schnitzer MJ, Lin MZ. High-fidelity optical reporting of neuronal electrical activity with an ultrafast fluorescent voltage sensor. Nat Neurosci. Nature Research; 2014;17: 884–889. doi: 10.1038/nn.3709 PubMed DOI PMC

Sakai R, Repunte-Canonigo V, Raj CD, Knopfel T. Design and characterization of a DNA-encoded, voltage-sensitive fluorescent protein. Eur J Neurosci. 2001;13: 2314–2318. doi: 10.1046/j.0953-816x.2001.01617.x PubMed DOI

Tsutsui H, Karasawa S, Okamura Y, Miyawaki A. Improving membrane voltage measurements using FRET with new fluorescent proteins. Nat Methods. Nature Publishing Group; 2008;5: 683–5. doi: 10.1038/nmeth.1235 PubMed DOI

Akemann W, Mutoh H, Perron A, Park YK, Iwamoto Y, Knöpfel T. Imaging neural circuit dynamics with a voltage-sensitive fluorescent protein. J Neurophysiol. 2012;108: 2323–37. doi: 10.1152/jn.00452.2012 PubMed DOI

Mutoh H, Perron A, Dimitrov D, Iwamoto Y, Akemann W, Chudakov DM, et al. Spectrally-resolved response properties of the three most advanced FRET based fluorescent protein voltage probes. PLoS One. 2009;4: 1–5. doi: 10.1371/journal.pone.0004555 PubMed DOI PMC

Perron A, Mutoh H, Akemann W, Gautam SG, Dimitrov D, Iwamoto Y, et al. Second and third generation voltage-sensitive fluorescent proteins for monitoring membrane potential. Front Mol Neurosci. 2009;2: 5 doi: 10.3389/neuro.02.005.2009 PubMed DOI PMC

Baird GS, Zacharias DA, Tsien RY. Circular permutation and receptor insertion within green fluorescent proteins. Proc Natl Acad Sci U S A. 1999;96: 11241–11246. doi: 10.1073/pnas.96.20.11241 PubMed DOI PMC

Mishina Y, Mutoh H, Knöpfel T. Transfer of Kv3.1 voltage sensor features to the isolated Ci-VSP voltage-sensing domain. Biophys J. 2012;103: 669–76. doi: 10.1016/j.bpj.2012.07.031 PubMed DOI PMC

Russell WC, Graham FL, Smiley J, Nairn R. Characteristics of a Human Cell Line Transformed by DNA from Human Adenovirus Type 5. J Gen Virol. 1977;36: 59–72. doi: 10.1099/0022-1317-36-1-59 PubMed DOI

Greene LA, Tischler AS. Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci U S A. 1976;73: 2424–8. PubMed PMC

Jin L, Han Z, Platisa J, Wooltorton JR, Cohen LB, Pieribone VA. Single action potentials and subthreshold electrical events imaged in neurons with a fluorescent protein voltage probe. Neuron. Elsevier Inc.; 2012;75: 779–85. doi: 10.1016/j.neuron.2012.06.040 PubMed DOI PMC

Sung U, Sepehri-Rad M, Piao HH, Jin L, Hughes T, Cohen LB, et al. Developing Fast Fluorescent Protein Voltage Sensors by Optimizing FRET Interactions. PLoS One. Public Library of Science; 2015;10: e0141585 doi: 10.1371/journal.pone.0141585 PubMed DOI PMC

Shemiakina II, Ermakova G V, Cranfill PJ, Baird MA, Evans RA, Souslova EA, et al. A monomeric red fluorescent protein with low cytotoxicity. Nat Commun. Nature Publishing Group; 2012;3: 1204 doi: 10.1038/ncomms2208 PubMed DOI

Pletnev S, Shcherbo D, Chudakov DM, Pletneva N, Merzlyak EM, Wlodawer A, et al. A crystallographic study of bright far-red fluorescent protein mKate reveals pH-induced cis-trans isomerization of the chromophore. J Biol Chem. 2008;283: 28980–7. doi: 10.1074/jbc.M800599200 PubMed DOI PMC

Shui B, Wang Q, Lee F, Byrnes LJ, Chudakov DM, Lukyanov SA, et al. Circular permutation of red fluorescent proteins. PLoS One. 2011;6: e20505 doi: 10.1371/journal.pone.0020505 PubMed DOI PMC

Kerppola TK. Bimolecular fluorescence complementation (BiFC) analysis as a probe of protein interactions in living cells. Annu Rev Biophys. 2008;37: 465–87. PubMed PMC

Landschulz WH, Johnson PF, McKnight SL. The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science. 1988;240: 1759–1764. doi: 10.1126/science.3289117 PubMed DOI

Hu C-D, Chinenov Y, Kerppola TK. Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation. Mol Cell. 2002;9: 789–98. PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...