Measurement of double-differential cross sections for top quark pair production in pp collisions at [Formula: see text][Formula: see text] and impact on parton distribution functions

. 2017 ; 77 (7) : 459. [epub] 20170711

Status PubMed-not-MEDLINE Jazyk angličtina Země Francie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28943791

Normalized double-differential cross sections for top quark pair ([Formula: see text]) production are measured in pp collisions at a centre-of-mass energy of 8[Formula: see text] with the CMS experiment at the LHC. The analyzed data correspond to an integrated luminosity of 19.7[Formula: see text]. The measurement is performed in the dilepton [Formula: see text] final state. The [Formula: see text] cross section is determined as a function of various pairs of observables characterizing the kinematics of the top quark and [Formula: see text] system. The data are compared to calculations using perturbative quantum chromodynamics at next-to-leading and approximate next-to-next-to-leading orders. They are also compared to predictions of Monte Carlo event generators that complement fixed-order computations with parton showers, hadronization, and multiple-parton interactions. Overall agreement is observed with the predictions, which is improved when the latest global sets of proton parton distribution functions are used. The inclusion of the measured [Formula: see text] cross sections in a fit of parametrized parton distribution functions is shown to have significant impact on the gluon distribution.

Academy of Scientific Research and Technology of the Arab Republic of Egypt Egyptian Network of High Energy Physics Cairo Egypt

Baylor University Waco USA

Beihang University Beijing China

Benemerita Universidad Autonoma de Puebla Puebla Mexico

Bhabha Atomic Research Centre Mumbai India

Bogazici University Istanbul Turkey

Boston University Boston USA

Brown University Providence USA

Brunel University Uxbridge UK

California Institute of Technology Pasadena USA

Carnegie Mellon University Pittsburgh USA

Catholic University of America Washington DC USA

Centre de Calcul de l'Institut National de Physique Nucleaire et de Physique des Particules CNRS IN2P3 Villeurbanne France

Centro Brasileiro de Pesquisas Fisicas Rio de Janeiro Brazil

Centro de Investigacion y de Estudios Avanzados del IPN Mexico City Mexico

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas Madrid Spain

CERN European Organization for Nuclear Research Geneva Switzerland

Charles University Prague Czech Republic

Chonbuk National University Jeonju Korea

Chonnam National University Institute for Universe and Elementary Particles Kwangju Korea

Cornell University Ithaca USA

Department of Physics Faculty of Science Chulalongkorn University Bangkok Thailand

Department of Physics University of California Santa Barbara Santa Barbara USA

Department of Physics University of Helsinki Helsinki Finland

Deutsches Elektronen Synchrotron Hamburg Germany

Faculty of Electrical Engineering Mechanical Engineering and Naval Architecture University of Split Split Croatia

Faculty of Physics and Vinca Institute of Nuclear Sciences University of Belgrade Belgrade Serbia

Faculty of Physics Institute of Experimental Physics University of Warsaw Warsaw Poland

Faculty of Science University of Split Split Croatia

Fairfield University Fairfield USA

Fermi National Accelerator Laboratory Batavia USA

Florida Institute of Technology Melbourne USA

Florida International University Miami USA

Florida State University Tallahassee USA

Georgian Technical University Tbilisi Georgia

Ghent University Ghent Belgium

Hanyang University Seoul Korea

Helsinki Institute of Physics Helsinki Finland

Imperial College London UK

Indian Institute of Science Bengaluru India

Indian Institute of Science Education and Research Pune India

Indian Institute of Technology Madras Madras India

INFN Laboratori Nazionali di Frascati Frascati Italy

INFN Sezione di Bari Università di Bari Politecnico di Bari Bari Italy

INFN Sezione di Bologna Università di Bologna Bologna Italy

INFN Sezione di Catania Università di Catania Catania Italy

INFN Sezione di Firenze Università di Firenze Florence Italy

INFN Sezione di Genova Università di Genova Genova Italy

INFN Sezione di Milano Bicocca Università di Milano Bicocca Milan Italy

INFN Sezione di Napoli Università di Napoli 'Federico II' Napoli Italy Università della Basilicata Potenza Italy Università G Marconi Rome Italy

INFN Sezione di Padova Università di Padova Padova Italy Università di Trento Trento Italy

INFN Sezione di Pavia Università di Pavia Pavia Italy

INFN Sezione di Perugia Università di Perugia Perugia Italy

INFN Sezione di Pisa Università di Pisa Scuola Normale Superiore di Pisa Pisa Italy

INFN Sezione di Roma Università di Roma Rome Italy

INFN Sezione di Torino Università di Torino Torino Italy Università del Piemonte Orientale Novara Italy

INFN Sezione di Trieste Università di Trieste Trieste Italy

Institut für Experimentelle Kernphysik Karlsruhe Germany

Institut für Hochenergiephysik Vienna Austria

Institut Pluridisciplinaire Hubert Curien Université de Strasbourg CNRS IN2P3 Strasbourg France

Institute for Nuclear Problems Minsk Belarus

Institute for Nuclear Research and Nuclear Energy Sofia Bulgaria

Institute for Nuclear Research Moscow Russia

Institute for Particle Physics ETH Zurich Zurich Switzerland

Institute for Research in Fundamental Sciences Tehran Iran

Institute for Scintillation Materials of National Academy of Science of Ukraine Kharkov Ukraine

Institute for Theoretical and Experimental Physics Moscow Russia

Institute of High Energy Physics Beijing China

Institute of Nuclear and Particle Physics NCSR Demokritos Aghia Paraskevi Greece

Institute of Nuclear Research ATOMKI Debrecen Hungary

Institute of Physics University of Debrecen Debrecen Hungary

Institute Rudjer Boskovic Zagreb Croatia

Instituto de Física de Cantabria CSIC Universidad de Cantabria Santander Spain

IRFU CEA Université Paris Saclay Gif sur Yvette France

Istanbul Technical University Istanbul Turkey

Johns Hopkins University Baltimore USA

Joint Institute for Nuclear Research Dubna Russia

Kansas State University Manhattan USA

Korea University Seoul Korea

Kyungpook National University Taegu Korea

Laboratoire Leprince Ringuet Ecole Polytechnique IN2P3 CNRS Palaiseau France

Laboratório de Instrumentação e Física Experimental de Partículas Lisbon Portugal

Lappeenranta University of Technology Lappeenranta Finland

Lawrence Livermore National Laboratory Livermore USA

Massachusetts Institute of Technology Cambridge USA

Moscow Institute of Physics and Technology Moscow Russia

MTA ELTE Lendület CMS Particle and Nuclear Physics Group Eötvös Loránd University Budapest Hungary

National and Kapodistrian University of Athens Athens Greece

National Central University Chung Li Taiwan

National Centre for Nuclear Research Swierk Poland

National Centre for Particle and High Energy Physics Minsk Belarus

National Centre for Particle Physics Universiti Malaya Kuala Lumpur Malaysia

National Centre for Physics Quaid 1 Azam University Islamabad Pakistan

National Institute of Chemical Physics and Biophysics Tallinn Estonia

National Institute of Science Education and Research Bhubaneswar India

National Research Nuclear University 'Moscow Engineering Physics Institute' Moscow Russia

National Scientific Center Kharkov Institute of Physics and Technology Kharkov Ukraine

National Taiwan University Taipei Taiwan

National Technical University of Athens Athens Greece

Northeastern University Boston USA

Northwestern University Evanston USA

Novosibirsk State University Novosibirsk Russia

P N Lebedev Physical Institute Moscow Russia

Panjab University Chandigarh India

Paul Scherrer Institut Villigen Switzerland

Petersburg Nuclear Physics Institute Gatchina Russia

Physics Department Middle East Technical University Ankara Turkey

Physics Department Science and Art Faculty Cukurova University Adana Turkey

Princeton University Princeton USA

Purdue University Northwest Hammond USA

Purdue University West Lafayette USA

Rice University Houston USA

Rutgers The State University of New Jersey Piscataway USA

Rutherford Appleton Laboratory Didcot UK

RWTH Aachen University 1 Physikalisches Institut Aachen Germany

RWTH Aachen University 3 Physikalisches Institut A Aachen Germany

RWTH Aachen University 3 Physikalisches Institut B Aachen Germany

Saha Institute of Nuclear Physics Kolkata India

Seoul National University Seoul Korea

Skobeltsyn Institute of Nuclear Physics Lomonosov Moscow State University Moscow Russia

State Key Laboratory of Nuclear Physics and Technology Peking University Beijing China

State Research Center of Russian Federation Institute for High Energy Physics Protvino Russia

State University of New York at Buffalo Buffalo USA

Sungkyunkwan University Suwon Korea

Tata Institute of Fundamental Research A Mumbai India

Tata Institute of Fundamental Research B Mumbai India

Tbilisi State University Tbilisi Georgia

Texas A and M University College Station USA

Texas Tech University Lubbock USA

The Ohio State University Columbus USA

The University of Alabama Tuscaloosa USA

The University of Iowa Iowa City USA

The University of Kansas Lawrence USA

Universidad Autónoma de Madrid Madrid Spain

Universidad Autónoma de San Luis Potosí San Luis Potosí Mexico

Universidad de Los Andes Bogotá Colombia

Universidad de Oviedo Oviedo Spain

Universidad Iberoamericana Mexico City Mexico

Universidad San Francisco de Quito Quito Ecuador

Universidade do Estado do Rio de Janeiro Rio de Janeiro Brazil

Universidade Estadual Paulista Universidade Federal do ABC São Paulo Brazil

Universität Zürich Zurich Switzerland

Université Catholique de Louvain Louvain la Neuve Belgium

Université de Lyon Université Claude Bernard Lyon 1 CNRS IN2P3 Institut de Physique Nucléaire de Lyon Villeurbanne France

Université de Mons Mons Belgium

Université Libre de Bruxelles Bruxelles Belgium

Universiteit Antwerpen Antwerpen Belgium

University College Dublin Dublin Ireland

University of Auckland Auckland New Zealand

University of Bristol Bristol UK

University of California Davis Davis USA

University of California Los Angeles USA

University of California Riverside Riverside USA

University of California San Diego La Jolla USA

University of Canterbury Christchurch New Zealand

University of Colorado Boulder Boulder USA

University of Cyprus Nicosia Cyprus

University of Delhi Delhi India

University of Florida Gainesville USA

University of Hamburg Hamburg Germany

University of Illinois at Chicago Chicago USA

University of Ioánnina Ioannina Greece

University of Maryland College Park USA

University of Minnesota Minneapolis USA

University of Mississippi Oxford USA

University of Nebraska Lincoln Lincoln USA

University of Notre Dame Notre Dame USA

University of Puerto Rico Mayagüez USA

University of Rochester Rochester USA

University of Seoul Seoul Korea

University of Sofia Sofia Bulgaria

University of Tennessee Knoxville USA

University of Virginia Charlottesville USA

University of Wisconsin Madison Madison WI USA

Vanderbilt University Nashville USA

Vilnius University Vilnius Lithuania

Vrije Universiteit Brussel Brussel Belgium

Wayne State University Detroit USA

Wigner Research Centre for Physics Budapest Hungary

Yerevan Physics Institute Yerevan Armenia

Zobrazit více v PubMed

D0 Collaboration, Observation of the top quark. Phys. Rev. Lett. 74, 2632 (1995). doi:10.1103/PhysRevLett.%2074.2632. arXiv:hep-ex/9503003 PubMed

CDF Collaboration, Observation of top quark production in PubMed

Czakon M, Mangano ML, Mitov A, Rojo J. Constraints on the gluon PDF from top quark pair production at hadron colliders. JHEP. 2013;07:167. doi: 10.1007/JHEP07(2013)167. DOI

Guzzi M, Lipka K, Moch S. Top-quark pair production at hadron colliders: differential cross section and phenomenological applications with DiffTop. JHEP. 2015;01:082. doi: 10.1007/JHEP01(2015)082. DOI

M. Czakon et al., Pinning down the large-x gluon with NNLO top-quark pair differential distributions (2016). arXiv:1611.08609

CMS Collaboration, Measurements of differential jet cross sections in proton–proton collisions at

CMS Collaboration, Constraints on parton distribution functions and extraction of the strong coupling constant from the inclusive jet cross section in pp collisions at PubMed PMC

CMS Collaboration, Measurement and QCD analysis of double-differential inclusive jet cross-sections in pp collisions at

CDF Collaboration, First measurement of the PubMed

D0 Collaboration, Measurement of differential

ATLAS Collaboration, Measurements of top quark pair relative differential cross-sections with ATLAS in pp collisions at

CMS Collaboration, Measurement of differential top-quark pair production cross sections in pp collisions at

ATLAS Collaboration, Measurements of normalized differential cross-sections for

ATLAS Collaboration, Measurement of top quark pair differential cross-sections in the dilepton channel in pp collisions at

CMS Collaboration, Measurement of the differential cross section for top quark pair production in pp collisions at PubMed PMC

ATLAS Collaboration, Measurements of top-quark pair differential cross-sections in the lepton+jets channel in pp collisions at PubMed PMC

CMS Collaboration, Measurement of differential cross sections for top quark pair production using the lepton+jets final state in proton–proton collisions at 13 TeV (2016). arXiv:1610.04191 (Submitted to Phys. Rev. D)

Mangano ML, Nason P, Ridolfi G. Heavy quark correlations in hadron collisions at next-to-leading order. Nucl. Phys. B. 1992;373:295. doi: 10.1016/0550-3213(92)90435-E. DOI

Kidonakis N, Laenen E, Moch S, Vogt R. Sudakov resummation and finite order expansions of heavy quark hadroproduction cross-sections. Phys. Rev. D. 2001;64:114001. doi: 10.1103/PhysRevD.64.114001. DOI

CMS Collaboration, The CMS experiment at the CERN LHC. JINST 3, S08004 (2008). doi:10.1088/1748-0221/3/08/S08004

Alwall J, et al. The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations. JHEP. 2014;07:079. doi: 10.1007/JHEP07(2014)079. DOI

Artoisenet P, Frederix R, Mattelaer O, Rietkerk R. Automatic spin-entangled decays of heavy resonances in Monte Carlo simulations. JHEP. 2013;03:015. doi: 10.1007/JHEP03(2013)015. DOI

Sjöstrand T, Mrenna S, Skands PZ. PYTHIA 6.4 physics and manual. JHEP. 2006;05:026. doi: 10.1088/1126-6708/2006/05/026. DOI

Pumplin J, et al. New generation of parton distributions with uncertainties from global QCD analysis. JHEP. 2002;07:012. doi: 10.1088/1126-6708/2002/07/012. DOI

Nason P. A new method for combining NLO QCD with shower Monte Carlo algorithms. JHEP. 2004;11:040. doi: 10.1088/1126-6708/2004/11/040. DOI

Frixione S, Nason P, Oleari C. Matching NLO QCD computations with parton shower simulations: the POWHEG method. JHEP. 2007;11:070. doi: 10.1088/1126-6708/2007/11/070. DOI

Alioli S, Nason P, Oleari C, Re E. A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX. JHEP. 2010;06:043. doi: 10.1007/JHEP06(2010)043. DOI

Corcella G, et al. HERWIG 6: an event generator for hadron emission reactions with interfering gluons (including supersymmetric processes) JHEP. 2001;01:010. doi: 10.1088/1126-6708/2001/01/010. DOI

Frixione S, Webber BR. Matching NLO QCD computations and parton shower simulations. JHEP. 2002;06:029. doi: 10.1088/1126-6708/2002/06/029. DOI

CMS Collaboration, Measurement of the underlying event activity at the LHC with

ATLAS Collaboration, ATLAS tunes of PYTHIA 6 and Pythia 8 for MC11. ATLAS PUB note ATL-PHYS-PUB-2011-009 (2011)

Lai H-L, et al. New parton distributions for collider physics. Phys. Rev. D. 2010;82:074024. doi: 10.1103/PhysRevD.82.074024. DOI

GEANT4 Collaboration, GEANT4—a simulation toolkit. Nucl. Instrum. Methods A 506, 250 (2003). doi:10.1016/S0168-9002(03)01368-8

CMS Collaboration, Particle-flow event reconstruction in CMS and performance for jets, taus, and

CMS Collaboration, Commissioning of the particle-flow event reconstruction with the first LHC collisions recorded in the CMS detector. CMS Physics Analysis Summary CMS-PAS-PFT-10-001 (2010)

CMS Collaboration, CMS tracking performance results from early LHC operation. Eur. Phys. J. C 70, 1165 (2010). doi:10.1140/epjc/s10052-010-1491-3. arXiv:1007.1988

Cacciari M, Salam GP, Soyez G. The catchment area of jets. JHEP. 2008;04:005. doi: 10.1088/1126-6708/2008/04/005. DOI

CMS Collaboration, Performance of electron reconstruction and selection with the CMS detector in proton–proton collisions at

CMS Collaboration, Measurement of the Drell–Yan cross section in pp collisions at

Cacciari M, Salam GP, Soyez G. The anti- DOI

Cacciari M, Salam GP, Soyez G. FastJet user manual. Eur. Phys. J. C. 2012;72:1896. doi: 10.1140/epjc/s10052-012-1896-2. DOI

CMS Collaboration, Identification of b-quark jets with the CMS experiment. JINST 8, P04013 (2013). doi:10.1088/1748-0221/8/04/P04013. arXiv:1211.4462

CMS Collaboration, Missing transverse energy performance of the CMS detector. JINST 6, P09001 (2011). doi:10.1088/1748-0221/6/09/P09001. arXiv:1106.5048

CMS Collaboration, Performance of missing transverse energy reconstruction by the CMS experiment in

D0 Collaboration, Measurement of the top quark mass using dilepton events. Phys. Rev. Lett. 80, 2063 (1998). doi:10.1103/PhysRevLett.80.2063. arXiv:hep-ex/9706014

L. Sonnenschein, Analytical solution of

I. Korol, Measurement of double differential

Schmitt S. TUnfold: an algorithm for correcting migration effects in high energy physics. JINST. 2012;7:T10003. doi: 10.1088/1748-0221/7/10/T10003. DOI

Tikhonov AN. Solution of incorrectly formulated problems and the regularization method. Sov. Math. Dokl. 1963;4:1035.

S. Schmitt, Data unfolding methods in high energy physics (2016). arXiv:1611.01927

Particle Data Group Collaboration, Review of particle physics. Chin. Phys. C 40, 100001 (2016). doi:10.1088/1674-1137/40/10/100001

TOTEM Collaboration, First measurement of the total proton–proton cross section at the LHC energy of

CMS Collaboration, Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV (2016). arXiv:1607.03663 (Submitted to JINST)

CMS Collaboration, Determination of jet energy calibration and transverse momentum resolution in CMS. JINST 6, P11002 (2011). doi:10.1088/1748-0221/6/11/P11002. arXiv:1107.4277

CMS Collaboration, CMS luminosity based on pixel cluster counting—summer 2013 update. CMS Physics Analysis Summary CMS-PAS-LUM-13-001 (2013)

Czakon M, Heymes D, Mitov A. High-precision differential predictions for top-quark pairs at the LHC. Phys. Rev. Lett. 2016;116:082003. doi: 10.1103/PhysRevLett.116.082003. PubMed DOI

M. Czakon, D. Heymes, A. Mitov, Dynamical scales for multi-TeV top-pair production at the LHC (2016). arXiv:1606.03350

Kidonakis N. NNNLO soft-gluon corrections for the top-quark DOI

Campbell JM, Ellis RK. mcfm for the Tevatron and the LHC. Nucl. Phys. Proc. Suppl. 2010;205–206:10. doi: 10.1016/j.nuclphysbps.2010.08.011. DOI

Alekhin S, Blümlein J, Moch S. Parton distribution functions and benchmark cross sections at NNLO. Phys. Rev. D. 2012;86:054009. doi: 10.1103/PhysRevD.86.054009. DOI

Accardi A, et al. Constraints on large- DOI

Dulat S, et al. New parton distribution functions from a global analysis of quantum chromodynamics. Phys. Rev. D. 2016;93:033006. doi: 10.1103/PhysRevD.93.033006. DOI

H1 and ZEUS Collaborations, Combination of measurements of inclusive deep inelastic

Jimenez-Delgado P, Reya E. Delineating parton distributions and the strong coupling. Phys. Rev. D. 2014;89:074049. doi: 10.1103/PhysRevD.89.074049. DOI

Harland-Lang LA, Martin AD, Motylinski P, Thorne RS. Parton distributions in the LHC era: MMHT 2014 PDFs. Eur. Phys. J. C. 2015;75:204. doi: 10.1140/epjc/s10052-015-3397-6. PubMed DOI PMC

NNPDF Collaboration, Parton distributions for the LHC Run II. JHEP 04, 040 (2015). doi:10.1007/JHEP04(2015)040. arXiv:1410.8849

Buckley A, et al. LHAPDF6: parton density access in the LHC precision era. Eur. Phys. J. C. 2015;75:132. doi: 10.1140/epjc/s10052-015-3318-8. DOI

Cacciari M, et al. Updated predictions for the total production cross sections of top and of heavier quark pairs at the Tevatron and at the LHC. JHEP. 2008;09:127. doi: 10.1088/1126-6708/2008/09/127. DOI

M. Guzzi, K. Lipka, S. Moch, Differential cross sections for top pair production at the LHC. Nucl. Part. Phys. Proc. NPPP601 (2015). doi:10.1016/j.nuclphysbps.2015.09.354. arXiv:1409.0444

M. Guzzi, K. Lipka, S. Moch, Top-quark production at the LHC: differential cross section and phenomenological applications, in Proceedings, 21st International Workshop on Deep-Inelastic Scattering and Related Subjects (DIS 2013), p. 049 (2013). arXiv:1308.1635. [PoS(DIS 2013)049]

Alekhin S, Blümlein J, Moch S. The ABM parton distributions tuned to LHC data. Phys. Rev. D. 2014;89:054028. doi: 10.1103/PhysRevD.89.054028. DOI

CMS Collaboration, Measurement of the differential cross section and charge asymmetry for inclusive PubMed PMC

Alekhin S, et al. HERAFitter. Eur. Phys. J. C. 2015;75:304. doi: 10.1140/epjc/s10052-015-3480-z. DOI

Dokshitzer YL. Calculation of the structure functions for deep inelastic scattering and e

Gribov VN, Lipatov LN. Deep inelastic ep scattering in perturbation theory. Sov. J. Nucl. Phys. 1972;15:438.

Altarelli G, Parisi G. Asymptotic freedom in parton language. Nucl. Phys. B. 1977;126:298. doi: 10.1016/0550-3213(77)90384-4. DOI

Curci G, Furmanski W, Petronzio R. Evolution of parton densities beyond leading order: the nonsinglet case. Nucl. Phys. B. 1980;175:27. doi: 10.1016/0550-3213(80)90003-6. DOI

Furmanski W, Petronzio R. Singlet parton densities beyond leading order. Phys. Lett. B. 1980;97:437. doi: 10.1016/0370-2693(80)90636-X. DOI

Moch S, Vermaseren JAM, Vogt A. The three-loop splitting functions in QCD: the nonsinglet case. Nucl. Phys. B. 2004;688:101. doi: 10.1016/j.nuclphysb.2004.03.030. DOI

Vogt A, Moch S, Vermaseren JAM. The three-loop splitting functions in QCD: the singlet case. Nucl. Phys. B. 2004;691:129. doi: 10.1016/j.nuclphysb.2004.04.024. DOI

Botje M. QCDNUM: fast QCD evolution and convolution. Comput. Phys. Commun. 2011;182:490. doi: 10.1016/j.cpc.2010.10.020. DOI

Thorne RS, Roberts RG. An ordered analysis of heavy flavor production in deep inelastic scattering. Phys. Rev. D. 1998;57:6871. doi: 10.1103/PhysRevD.57.6871. DOI

Thorne RS. A variable-flavor number scheme for NNLO. Phys. Rev. D. 2006;73:054019. doi: 10.1103/PhysRevD.73.054019. DOI

Thorne RS. Effect of changes of variable flavor number scheme on parton distribution functions and predicted cross sections. Phys. Rev. D. 2012;86:074017. doi: 10.1103/PhysRevD.86.074017. DOI

Campbell JM, Ellis RK. An update on vector boson pair production at hadron colliders. Phys. Rev. D. 1999;60:113006. doi: 10.1103/PhysRevD.60.113006. DOI

Carli T, et al. A posteriori inclusion of parton density functions in NLO QCD final-state calculations at hadron colliders: the ApplGrid project. Eur. Phys. J. C. 2010;66:503. doi: 10.1140/epjc/s10052-010-1255-0. DOI

Martin AD, Stirling WJ, Thorne RS, Watt G. Parton distributions for the LHC. Eur. Phys. J. C. 2009;63:189. doi: 10.1140/epjc/s10052-009-1072-5. DOI

CMS Collaboration, Measurement of the muon charge asymmetry in inclusive

H1 Collaboration, Inclusive deep inelastic scattering at high

D. Britzger, K. Rabbertz, F. Stober, M. Wobisch, New features in version 2 of the fastNLO project, in Proceedings, XX. International Workshop on Deep-Inelastic Scattering and Related Subjects (DIS 2012). Bonn, Germany, March 26–30, 2012. arXiv:1208.3641. doi:10.3204/DESY-PROC-2012-02/165

Li Y, Petriello F. Combining QCD and electroweak corrections to dilepton production in fewz. Phys. Rev. D. 2012;86:094034. doi: 10.1103/PhysRevD.86.094034. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...