• This record comes from PubMed

Anticarcinogenic Effect of Spices Due to Phenolic and Flavonoid Compounds-In Vitro Evaluation on Prostate Cells

. 2017 Sep 28 ; 22 (10) : . [epub] 20170928

Language English Country Switzerland Media electronic

Document type Journal Article

Links

PubMed 28956846
PubMed Central PMC6151579
DOI 10.3390/molecules22101626
PII: molecules22101626
Knihovny.cz E-resources

This study shows the effects of spices, and their phenolic and flavonoid compounds, on prostate cell lines (PNT1A, 22RV1 and PC3). The results of an MTT assay on extracts from eight spices revealed the strongest inhibitory effects were from black pepper and caraway seed extracts. The strongest inhibitory effect on prostatic cells was observed after the application of extracts of spices in concentration of 12.5 mg·mL-1. An LC/MS analysis identified that the most abundant phenolic and flavonoid compounds in black pepper are 3,4-dihydroxybenzaldehyde and naringenin chalcone, while the most abundant phenolic and flavonoid compounds in caraway seeds are neochlorogenic acid and apigenin. Using an MTT assay for the phenolic and flavonoid compounds from spices, we identified the IC50 value of ~1 mmol·L-1 PNT1A. The scratch test demonstrated that the most potent inhibitory effect on PNT1A, 22RV1 and PC3 cells is from the naringenin chalcone contained in black pepper. From the spectrum of compounds assessed, the naringenin chalcone contained in black pepper was identified as the most potent inhibitor of the growth of prostate cells.

See more in PubMed

Cencic A., Chingwaru W. The role of functional foods, nutraceuticals, and food supplements in intestinal health. Nutrients. 2010;2:611–625. doi: 10.3390/nu2060611. PubMed DOI PMC

Pandey K.B., Rizvi S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxidative Med. Cell. Longev. 2009;2:270–278. doi: 10.4161/oxim.2.5.9498. PubMed DOI PMC

Slavin J.L., Lloyd B. Health benefits of fruits and vegetables. Adv. Nutr. 2012;3:506–516. doi: 10.3945/an.112.002154. PubMed DOI PMC

El Ksibi I., Ben Slama R., Faidi K., Ben Ticha M., M’Henni M.F. Mixture approach for optimizing the recovery of colored phenolics from red pepper (Capsicum annum L.) by-products as potential source of natural dye and assessment of its antimicrobial activity. Ind. Crop. Prod. 2015;70:34–40. doi: 10.1016/j.indcrop.2015.03.017. DOI

Hertwig C., Reineke K., Ehlbeck J., Knorr D., Schluter O. Decontamination of whole black pepper using different cold atmospheric pressure plasma applications. Food Control. 2015;55:221–229. doi: 10.1016/j.foodcont.2015.03.003. DOI

Mnif S., Aifa S. Cumin (Cuminum cyminum L.) from traditional uses to potential biomedical applications. Chem. Biodivers. 2015;12:733–742. doi: 10.1002/cbdv.201400305. PubMed DOI

Shahwar D., Ullah S., Khan M.A., Ahmad N., Saeed A. Anticancer activity of cinnamon tamala leaf constituents towards human ovarian cancer cells. Pak. J. Pharm. Sci. 2015;28:969–972. PubMed

Ramadan G., El-Beih N.M., Arafa N.M.S., Zahra M.M. Preventive effects of egyptian sweet marjoram (Origanum majorana L.) leaves on haematological changes and cardiotoxicity in isoproterenol-treated albino rats. Cardiovasc. Toxicol. 2013;13:100–109. doi: 10.1007/s12012-012-9189-4. PubMed DOI

Martucci J.F., Gende L.B., Neira L.M., Ruseckaite R.A. Oregano and lavender essential oils as antioxidant and antimicrobial additives of biogenic gelatin films. Ind. Crop. Prod. 2015;71:205–213. doi: 10.1016/j.indcrop.2015.03.079. DOI

Ben-Jabeur M., Ghabri E., Myriam M., Hamada W. Thyme essential oil as a defense inducer of tomato against gray mold and fusarium wilt. Plant Physiol. Biochem. 2015;94:35–40. doi: 10.1016/j.plaphy.2015.05.006. PubMed DOI

Garcia-Perez E., Noratto G.D., Garcia-Lara S., Gutierrez-Uribe J.A., Mertens-Talcott S.U. Micropropagation effect on the anti-carcinogenic activitiy of polyphenolics from mexican oregano (Poliomintha glabrescens gray) in human colon cancer cells ht-29. Plant Food Hum. Nutr. 2013;68:155–162. doi: 10.1007/s11130-013-0344-2. PubMed DOI

Flora S.J.S. Structural, chemical and biological aspects of antioxidants for strategies against metal and metalloid exposure. Oxidative Med. Cell. Longev. 2009;2:191–206. doi: 10.4161/oxim.2.4.9112. PubMed DOI PMC

Samykutty A., Shetty A.V., Dakshinamoorthy G., Bartik M.M., Johnson G.L., Webb B., Zheng G., Chen A.X., Kalyanasundaram R.S., Munirathinam G. Piperine, a bioactive component of pepper spice exerts therapeutic effects on androgen dependent and androgen independent prostate cancer cells. PLoS ONE. 2013;8 doi: 10.1371/journal.pone.0065889. PubMed DOI PMC

Surh Y.J., Kundu J.K. Molecular mechanisms of chemoprevention with capsaicinoids from chili peppers. In: Mutanen M., Pajari A.M., editors. Vegetables, Whole Grains, and Their Derivatives in Cancer Prevention. Volume 2. Springer; Dordrecht, The Netherlands: 2011. pp. 123–142.

Wei X.C., Du Z.Y., Cui X.X., Verano M., Mo R.Q., Tang Z.K., Conney A.H., Zheng X., Zhang K. Effects of cyclohexanone analogues of curcumin on growth, apoptosis and NF-kappa B activity in PC-3 human prostate cancer cells. Oncol. Lett. 2012;4:279–284. PubMed PMC

Chendil D., Ranga R.S., Meigooni D., Sathishkumar S., Ahmed M.M. Curcumin confers radiosensitizing effect in prostate cancer cell line PC-3. Oncogene. 2004;23:1599–1607. doi: 10.1038/sj.onc.1207284. PubMed DOI

Nakamura K., Yasunaga Y., Segawa T., Ko D.J., Moul J.W., Srivastava S., Rhim J.S. Curcumin down-regulates ar gene expression and activation in prostate cancer cell lines. Int. J. Oncol. 2002;21:825–830. doi: 10.3892/ijo.21.4.825. PubMed DOI

Ouyang D.Y., Zeng L.H., Pan H., Xu L.H., Wang Y., Liu K.P., He X.H. Piperine inhibits the proliferation of human prostate cancer cells via induction of cell cycle arrest and autophagy. Food Chem. Toxicol. 2013;60:424–430. doi: 10.1016/j.fct.2013.08.007. PubMed DOI

Al Dhaheri Y., Eid A., AbuQamar S., Attoub S., Khasawneh M., Aiche G., Hisaindee S., Iratni R. Mitotic arrest and apoptosis in breast cancer cells induced by origanum majorana extract: Upregulation of TNF-α and downregulation of survivin and mutant p53. PLoS ONE. 2013;8:1–14. doi: 10.1371/journal.pone.0056649. PubMed DOI PMC

Abdel-Massih R.M., Fares R., Bazzi S., El-Chami N., Baydoun E. The apoptotic and anti-proliferative activity of origanum majorana extracts on human leukemic cell line. Leuk. Res. 2010;34:1052–1056. doi: 10.1016/j.leukres.2009.09.018. PubMed DOI

Ahmad R.A., Abdullah S., Serati-Nouri H., Majid F.A.A., Sarmidi M.R., Aziz R.A. Antiproliferative activity of coumarin and cinnamon water extracts on human ovarian cancer cells. Lat. Am. J. Pharm. 2014;33:960–965.

Chuang L.Y., Guh J.Y., Chao L.K., Lu Y.C., Hwang J.Y., Yang Y.L., Cheng T.H., Yang W.Y., Chien Y.J., Huang J.S. Anti-proliferative effects of cinnamaldehyde on human hepatoma cell lines. Food Chem. 2012;133:1603–1610. doi: 10.1016/j.foodchem.2012.02.059. DOI

Koppikar S.J., Choudhari A.S., Suryavanshi S.A., Kumari S., Chattopadhyay S., Kaul-Ghanekar R. Aqueous cinnamon extract (ACE-c) from the bark of cinnamomum cassia causes apoptosis in human cervical cancer cell line (SiHa) through loss of mitochondrial membrane potential. BMC Cancer. 2010;10:1–12. doi: 10.1186/1471-2407-10-210. PubMed DOI PMC

Kim J.E., Son J.E., Jeong H., Kim D.J., Seo S.G., Lee E., Lim T.G., Kim J.R., Kimbung Y.R., Chen H.Y., et al. A novel cinnamon-related natural product with Pim-1 inhibitory activity inhibits leukemia and skin cancer. Cancer Res. 2015;75:2716–2728. doi: 10.1158/0008-5472.CAN-14-3655. PubMed DOI PMC

Mahajan U.B., Chandrayan G., Patil C.R., Arya D.S., Suchal K., Agrawal Y.O., Ojha S., Goyal S.N. The protective effect of apigenin on myocardial injury in diabetic rats mediating activation of the PPAR- gamma pathway. Int. J. Mol. Sci. 2017;18:756. doi: 10.3390/ijms18040756. PubMed DOI PMC

Cardenas H., Arango D., Nicholas C., Duarte S., Nuovo G.J., He W., Voss O.H., Gonzalez-Mejia M.E., Guttridge D.C., Grotewold E., et al. Dietary apigenin exerts immune-regulatory activity in vivo by reducing nf-kappa b activity, halting leukocyte infiltration and restoring normal metabolic function. Int. J. Mol. Sci. 2016;17:323. doi: 10.3390/ijms17030323. PubMed DOI PMC

He J., Xu Q., Wang M., Li C.Y., Qian X., Shi Z.M., Liu L.Z., Jiang B.H. Oral administration of apigenin inhibits metastasis through AKT/P70S6K1/MMP-9 pathway in orthotopic ovarian tumor model. Int. J. Mol. Sci. 2012;13:7271–7282. doi: 10.3390/ijms13067271. PubMed DOI PMC

Franzen C.A., Amargo E., Todorovic V., Desai B.V., Huda S., Mirzoeva S., Chiu K., Grzybowski B.A., Chew T.L., Green K.J., et al. The chemopreventive bioflavonoid apigenin inhibits prostate cancer cell motility through the focal adhesion kinase/src signaling mechanism. Cancer Prev. Res. 2009;2:830–841. doi: 10.1158/1940-6207.CAPR-09-0066. PubMed DOI

Zhang S., Jiang Z.F., Pan Q., Song C.Y., Zhang W.H. Anti-cancer effect of naringenin chalcone is mediated via the induction of autophagy, apoptosis and activation of PI3K/AKT signalling pathway. Bangladesh J. Pharmacol. 2016;11:684–690. doi: 10.3329/bjp.v11i3.27518. DOI

Banerjee N., Kim H., Talcott S.T., Turner N.D., Byrne D.H., Mertens-Talcott S.U. Plum polyphenols inhibit colorectal aberrant crypt foci formation in rats: Potential role of the miR-143/protein kinase b/mammalian target of rapamycin axis. Nutr. Res. 2016;36:1105–1113. doi: 10.1016/j.nutres.2016.06.008. PubMed DOI

Noratto G., Porter W., Byrne D., Cisneros-Zevallos L. Identifying peach and plum polyphenols with chemopreventive potential against estrogen-independent breast cancer cells. J. Agric. Food Chem. 2009;57:5219–5226. doi: 10.1021/jf900259m. PubMed DOI

Jeong J.B., Lee S.H. Protocatechualdehyde possesses anti-cancer activity through downregulating cyclin D1 and HDAC2 in human colorectal cancer cells. Biochem. Biophys. Res. Commun. 2013;430:381–386. doi: 10.1016/j.bbrc.2012.11.018. PubMed DOI

Hong S.H., Ismail I.A., Kang S.M., Han D.C., Kwon B.M. Cinnamaldehydes in cancer chemotherapy. Phytother. Res. 2016;30:754–767. doi: 10.1002/ptr.5592. PubMed DOI

Kang H.S., Ock J., Lee H.J., Lee Y.J., Kwon B.M., Hong S.H. Early growth response protein 1 upregulation and nuclear translocation by 2’-benzoyloxycinnamaldehyde induces prostate cancer cell death. Cancer Lett. 2013;329:217–227. doi: 10.1016/j.canlet.2012.11.006. PubMed DOI

Qi G.Y., Chen J., Shi C.R., Wang Y.K., Mi S.S., Shao W.H., Yu X.Y., Ma Y.L., Ling J.P., Huang J. Cinnamic acid (cinn) induces apoptosis and proliferation in human nasopharyngeal carcinoma cells. Cell. Physiol. Biochem. 2016;40:589–596. doi: 10.1159/000452572. PubMed DOI

Munirathinam G., Gray K. Cinnamaldehye, a dietary flavoring agent derived from cinnamon targets prostate cancer cells. Endocr. Rev. 2014;35:1–2. PubMed

Park K.R., Nam D., Yun H.M., Lee S.G., Jang H.J., Sethi G., Cho S.K., Ahn K.S. Beta-caryophyllene oxide inhibits growth and induces apoptosis through the suppression of PI3K/AKT/MTOR/S6K1 pathways and ros-mediated mapks activation. Cancer Lett. 2011;312:178–188. doi: 10.1016/j.canlet.2011.08.001. PubMed DOI

Zu Y.G., Yu H.M., Liang L., Fu Y.J., Efferth T., Liu X., Wu N. Activities of ten essential oils towards propionibacterium acnes and PC-3, A-549 and MCF-7 cancer cells. Molecules. 2010;15:3200–3210. doi: 10.3390/molecules15053200. PubMed DOI PMC

Chandra P., Pandey R., Srivastva M., Rameshkumar K.B., Kumar B. Quantitative determination of chemical constituents of piper spp. Using uplc-esi-ms/ms. Ind. Crop. Prod. 2015;76:967–976. doi: 10.1016/j.indcrop.2015.08.010. DOI

Morris M.E., Zhang S.Z. Flavonoid-drug interactions: Effects of flavonoids on abc transporters. Life Sci. 2006;78:2116–2130. doi: 10.1016/j.lfs.2005.12.003. PubMed DOI

Stevenson D.E., Scheepens A., Hurst R.D. Bioavailability and Metabolism of Dietary Flavonoids—Much Known—Much More to Discover. Nova Science Publishers, Inc.; Hauppauge, NY, USA: 2009. pp. 1–52.

Miron A., Aprotosoaie A.C., Trifan A., Xiao J.B. Flavonoids as modulators of metabolic enzymes and drug transporters. Ann. N. Y. Acad. Sci. 2017;1398:152–167. doi: 10.1111/nyas.13384. PubMed DOI

Moon Y.J., Wang X.D., Morris M.E. Dietary flavonoids: Effects on xenobiotic and carcinogen metabolism. Toxicol. In Vitro. 2006;20:187–210. doi: 10.1016/j.tiv.2005.06.048. PubMed DOI

Venturelli S., Burkard M., Biendl M., Lauer U.M., Frank J., Busch C. Prenylated chalcones and flavonoids for the prevention and treatment of cancer. Nutrition. 2016;32:1171–1178. doi: 10.1016/j.nut.2016.03.020. PubMed DOI

Orjala J., Wright A.D., Behrends H., Folkers G., Sticher O., Ruegger H., Rali T. Cytotoxic and antibacterial dihydrochalcones from piper aduncum. J. Nat. Prod. 1994;57:18–26. doi: 10.1021/np50103a003. PubMed DOI

Tamogami S., Kodama O. Coronatine elicits phytoalexin production in rice leaves (Oryza sativa L.) in the same manner as jasmonic acid. Phytochemistry. 2000;54:689–694. doi: 10.1016/S0031-9422(00)00190-4. PubMed DOI

Koirala N., Thuan N.H., Ghimire G.P., Thang D.V., Sohng J.K. Methylation of flavonoids: Chemical structures, bioactivities, progress and perspectives for biotechnological production. Enzyme Microb. Technol. 2016;86:103–116. doi: 10.1016/j.enzmictec.2016.02.003. PubMed DOI

Wu J.C., Lai C.S., Tsai M.L., Ho C.T., Wang Y.J., Pan M.H. Chemopreventive effect of natural dietary compounds on xenobiotic-induced toxicity. J. Food Drug Anal. 2017;25:176–186. doi: 10.1016/j.jfda.2016.10.019. PubMed DOI PMC

Kumar S., Pandey A.K. Chemistry and biological activities of flavonoids: An overview. Sci. World J. 2013 doi: 10.1155/2013/162750. PubMed DOI PMC

Gao K., Henning S.M., Niu Y.T., Youssefian A.A., Seeram N.P., Xu A.L., Heber D. The citrus flavonoid naringenin stimulates DNA repair in prostate cancer cells. J. Nutr. Biochem. 2006;17:89–95. doi: 10.1016/j.jnutbio.2005.05.009. PubMed DOI

Yang C.S., Landau J.M., Huang M.T., Newmark H.L. Inhibition of carcinogenesis by dietary polyphenolic compounds. Annu. Rev. Nutr. 2001;21:381–406. doi: 10.1146/annurev.nutr.21.1.381. PubMed DOI

Afaq F., Saleem M., Krueger C.G., Reed J.D., Mukhtar H. Anthocyanin- and hydrolyzable tannin-rich pomegranate fruit extract modulates MAPK and NF-kappa b pathways and inhibits skin tumorigenesis in CD-1 mice. Int. J. Cancer. 2005;113:423–433. doi: 10.1002/ijc.20587. PubMed DOI

Williams R.J., Spencer J.P.E., Rice-Evans C. Flavonoids: Antioxidants or signalling molecules? Free Radic. Biol. Med. 2004;36:838–849. doi: 10.1016/j.freeradbiomed.2004.01.001. PubMed DOI

Morel I., Abalea V., Cillard P., Cillard J. Repair of oxidized DNA by the flavonoid myricetin. Methods Enzymol. 2001;335:308–316. PubMed

Lewinska A., Siwak J., Rzeszutek I., Wnuk M. Diosmin induces genotoxicity and apoptosis in DU145 prostate cancer cell line. Toxicol. In Vitro. 2015;29:417–425. doi: 10.1016/j.tiv.2014.12.005. PubMed DOI

Siwak J., Lewinska A., Wnuk M., Bartosz G. Protection of flavonoids against hypochlorite-induced protein modifications. Food Chem. 2013;141:1227–1241. doi: 10.1016/j.foodchem.2013.04.018. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...