Anticarcinogenic Effect of Spices Due to Phenolic and Flavonoid Compounds-In Vitro Evaluation on Prostate Cells
Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
28956846
PubMed Central
PMC6151579
DOI
10.3390/molecules22101626
PII: molecules22101626
Knihovny.cz E-resources
- Keywords
- 3,4-dihydroxybenzaldehyde, MTT assay, apigenin, clonogenic assay, naringenin chalcone, neochlorogenic acid, prostate cancer, scratch test, spices,
- MeSH
- Anticarcinogenic Agents chemistry pharmacology MeSH
- Cell Line MeSH
- Chromatography, Liquid MeSH
- Phenols chemistry pharmacology MeSH
- Flavonoids chemistry pharmacology MeSH
- Mass Spectrometry MeSH
- Wound Healing drug effects MeSH
- Spices analysis MeSH
- Humans MeSH
- Cell Line, Tumor MeSH
- Cell Proliferation drug effects MeSH
- Prostate MeSH
- Plant Extracts chemistry pharmacology MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Anticarcinogenic Agents MeSH
- Phenols MeSH
- Flavonoids MeSH
- Plant Extracts MeSH
This study shows the effects of spices, and their phenolic and flavonoid compounds, on prostate cell lines (PNT1A, 22RV1 and PC3). The results of an MTT assay on extracts from eight spices revealed the strongest inhibitory effects were from black pepper and caraway seed extracts. The strongest inhibitory effect on prostatic cells was observed after the application of extracts of spices in concentration of 12.5 mg·mL-1. An LC/MS analysis identified that the most abundant phenolic and flavonoid compounds in black pepper are 3,4-dihydroxybenzaldehyde and naringenin chalcone, while the most abundant phenolic and flavonoid compounds in caraway seeds are neochlorogenic acid and apigenin. Using an MTT assay for the phenolic and flavonoid compounds from spices, we identified the IC50 value of ~1 mmol·L-1 PNT1A. The scratch test demonstrated that the most potent inhibitory effect on PNT1A, 22RV1 and PC3 cells is from the naringenin chalcone contained in black pepper. From the spectrum of compounds assessed, the naringenin chalcone contained in black pepper was identified as the most potent inhibitor of the growth of prostate cells.
See more in PubMed
Cencic A., Chingwaru W. The role of functional foods, nutraceuticals, and food supplements in intestinal health. Nutrients. 2010;2:611–625. doi: 10.3390/nu2060611. PubMed DOI PMC
Pandey K.B., Rizvi S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxidative Med. Cell. Longev. 2009;2:270–278. doi: 10.4161/oxim.2.5.9498. PubMed DOI PMC
Slavin J.L., Lloyd B. Health benefits of fruits and vegetables. Adv. Nutr. 2012;3:506–516. doi: 10.3945/an.112.002154. PubMed DOI PMC
El Ksibi I., Ben Slama R., Faidi K., Ben Ticha M., M’Henni M.F. Mixture approach for optimizing the recovery of colored phenolics from red pepper (Capsicum annum L.) by-products as potential source of natural dye and assessment of its antimicrobial activity. Ind. Crop. Prod. 2015;70:34–40. doi: 10.1016/j.indcrop.2015.03.017. DOI
Hertwig C., Reineke K., Ehlbeck J., Knorr D., Schluter O. Decontamination of whole black pepper using different cold atmospheric pressure plasma applications. Food Control. 2015;55:221–229. doi: 10.1016/j.foodcont.2015.03.003. DOI
Mnif S., Aifa S. Cumin (Cuminum cyminum L.) from traditional uses to potential biomedical applications. Chem. Biodivers. 2015;12:733–742. doi: 10.1002/cbdv.201400305. PubMed DOI
Shahwar D., Ullah S., Khan M.A., Ahmad N., Saeed A. Anticancer activity of cinnamon tamala leaf constituents towards human ovarian cancer cells. Pak. J. Pharm. Sci. 2015;28:969–972. PubMed
Ramadan G., El-Beih N.M., Arafa N.M.S., Zahra M.M. Preventive effects of egyptian sweet marjoram (Origanum majorana L.) leaves on haematological changes and cardiotoxicity in isoproterenol-treated albino rats. Cardiovasc. Toxicol. 2013;13:100–109. doi: 10.1007/s12012-012-9189-4. PubMed DOI
Martucci J.F., Gende L.B., Neira L.M., Ruseckaite R.A. Oregano and lavender essential oils as antioxidant and antimicrobial additives of biogenic gelatin films. Ind. Crop. Prod. 2015;71:205–213. doi: 10.1016/j.indcrop.2015.03.079. DOI
Ben-Jabeur M., Ghabri E., Myriam M., Hamada W. Thyme essential oil as a defense inducer of tomato against gray mold and fusarium wilt. Plant Physiol. Biochem. 2015;94:35–40. doi: 10.1016/j.plaphy.2015.05.006. PubMed DOI
Garcia-Perez E., Noratto G.D., Garcia-Lara S., Gutierrez-Uribe J.A., Mertens-Talcott S.U. Micropropagation effect on the anti-carcinogenic activitiy of polyphenolics from mexican oregano (Poliomintha glabrescens gray) in human colon cancer cells ht-29. Plant Food Hum. Nutr. 2013;68:155–162. doi: 10.1007/s11130-013-0344-2. PubMed DOI
Flora S.J.S. Structural, chemical and biological aspects of antioxidants for strategies against metal and metalloid exposure. Oxidative Med. Cell. Longev. 2009;2:191–206. doi: 10.4161/oxim.2.4.9112. PubMed DOI PMC
Samykutty A., Shetty A.V., Dakshinamoorthy G., Bartik M.M., Johnson G.L., Webb B., Zheng G., Chen A.X., Kalyanasundaram R.S., Munirathinam G. Piperine, a bioactive component of pepper spice exerts therapeutic effects on androgen dependent and androgen independent prostate cancer cells. PLoS ONE. 2013;8 doi: 10.1371/journal.pone.0065889. PubMed DOI PMC
Surh Y.J., Kundu J.K. Molecular mechanisms of chemoprevention with capsaicinoids from chili peppers. In: Mutanen M., Pajari A.M., editors. Vegetables, Whole Grains, and Their Derivatives in Cancer Prevention. Volume 2. Springer; Dordrecht, The Netherlands: 2011. pp. 123–142.
Wei X.C., Du Z.Y., Cui X.X., Verano M., Mo R.Q., Tang Z.K., Conney A.H., Zheng X., Zhang K. Effects of cyclohexanone analogues of curcumin on growth, apoptosis and NF-kappa B activity in PC-3 human prostate cancer cells. Oncol. Lett. 2012;4:279–284. PubMed PMC
Chendil D., Ranga R.S., Meigooni D., Sathishkumar S., Ahmed M.M. Curcumin confers radiosensitizing effect in prostate cancer cell line PC-3. Oncogene. 2004;23:1599–1607. doi: 10.1038/sj.onc.1207284. PubMed DOI
Nakamura K., Yasunaga Y., Segawa T., Ko D.J., Moul J.W., Srivastava S., Rhim J.S. Curcumin down-regulates ar gene expression and activation in prostate cancer cell lines. Int. J. Oncol. 2002;21:825–830. doi: 10.3892/ijo.21.4.825. PubMed DOI
Ouyang D.Y., Zeng L.H., Pan H., Xu L.H., Wang Y., Liu K.P., He X.H. Piperine inhibits the proliferation of human prostate cancer cells via induction of cell cycle arrest and autophagy. Food Chem. Toxicol. 2013;60:424–430. doi: 10.1016/j.fct.2013.08.007. PubMed DOI
Al Dhaheri Y., Eid A., AbuQamar S., Attoub S., Khasawneh M., Aiche G., Hisaindee S., Iratni R. Mitotic arrest and apoptosis in breast cancer cells induced by origanum majorana extract: Upregulation of TNF-α and downregulation of survivin and mutant p53. PLoS ONE. 2013;8:1–14. doi: 10.1371/journal.pone.0056649. PubMed DOI PMC
Abdel-Massih R.M., Fares R., Bazzi S., El-Chami N., Baydoun E. The apoptotic and anti-proliferative activity of origanum majorana extracts on human leukemic cell line. Leuk. Res. 2010;34:1052–1056. doi: 10.1016/j.leukres.2009.09.018. PubMed DOI
Ahmad R.A., Abdullah S., Serati-Nouri H., Majid F.A.A., Sarmidi M.R., Aziz R.A. Antiproliferative activity of coumarin and cinnamon water extracts on human ovarian cancer cells. Lat. Am. J. Pharm. 2014;33:960–965.
Chuang L.Y., Guh J.Y., Chao L.K., Lu Y.C., Hwang J.Y., Yang Y.L., Cheng T.H., Yang W.Y., Chien Y.J., Huang J.S. Anti-proliferative effects of cinnamaldehyde on human hepatoma cell lines. Food Chem. 2012;133:1603–1610. doi: 10.1016/j.foodchem.2012.02.059. DOI
Koppikar S.J., Choudhari A.S., Suryavanshi S.A., Kumari S., Chattopadhyay S., Kaul-Ghanekar R. Aqueous cinnamon extract (ACE-c) from the bark of cinnamomum cassia causes apoptosis in human cervical cancer cell line (SiHa) through loss of mitochondrial membrane potential. BMC Cancer. 2010;10:1–12. doi: 10.1186/1471-2407-10-210. PubMed DOI PMC
Kim J.E., Son J.E., Jeong H., Kim D.J., Seo S.G., Lee E., Lim T.G., Kim J.R., Kimbung Y.R., Chen H.Y., et al. A novel cinnamon-related natural product with Pim-1 inhibitory activity inhibits leukemia and skin cancer. Cancer Res. 2015;75:2716–2728. doi: 10.1158/0008-5472.CAN-14-3655. PubMed DOI PMC
Mahajan U.B., Chandrayan G., Patil C.R., Arya D.S., Suchal K., Agrawal Y.O., Ojha S., Goyal S.N. The protective effect of apigenin on myocardial injury in diabetic rats mediating activation of the PPAR- gamma pathway. Int. J. Mol. Sci. 2017;18:756. doi: 10.3390/ijms18040756. PubMed DOI PMC
Cardenas H., Arango D., Nicholas C., Duarte S., Nuovo G.J., He W., Voss O.H., Gonzalez-Mejia M.E., Guttridge D.C., Grotewold E., et al. Dietary apigenin exerts immune-regulatory activity in vivo by reducing nf-kappa b activity, halting leukocyte infiltration and restoring normal metabolic function. Int. J. Mol. Sci. 2016;17:323. doi: 10.3390/ijms17030323. PubMed DOI PMC
He J., Xu Q., Wang M., Li C.Y., Qian X., Shi Z.M., Liu L.Z., Jiang B.H. Oral administration of apigenin inhibits metastasis through AKT/P70S6K1/MMP-9 pathway in orthotopic ovarian tumor model. Int. J. Mol. Sci. 2012;13:7271–7282. doi: 10.3390/ijms13067271. PubMed DOI PMC
Franzen C.A., Amargo E., Todorovic V., Desai B.V., Huda S., Mirzoeva S., Chiu K., Grzybowski B.A., Chew T.L., Green K.J., et al. The chemopreventive bioflavonoid apigenin inhibits prostate cancer cell motility through the focal adhesion kinase/src signaling mechanism. Cancer Prev. Res. 2009;2:830–841. doi: 10.1158/1940-6207.CAPR-09-0066. PubMed DOI
Zhang S., Jiang Z.F., Pan Q., Song C.Y., Zhang W.H. Anti-cancer effect of naringenin chalcone is mediated via the induction of autophagy, apoptosis and activation of PI3K/AKT signalling pathway. Bangladesh J. Pharmacol. 2016;11:684–690. doi: 10.3329/bjp.v11i3.27518. DOI
Banerjee N., Kim H., Talcott S.T., Turner N.D., Byrne D.H., Mertens-Talcott S.U. Plum polyphenols inhibit colorectal aberrant crypt foci formation in rats: Potential role of the miR-143/protein kinase b/mammalian target of rapamycin axis. Nutr. Res. 2016;36:1105–1113. doi: 10.1016/j.nutres.2016.06.008. PubMed DOI
Noratto G., Porter W., Byrne D., Cisneros-Zevallos L. Identifying peach and plum polyphenols with chemopreventive potential against estrogen-independent breast cancer cells. J. Agric. Food Chem. 2009;57:5219–5226. doi: 10.1021/jf900259m. PubMed DOI
Jeong J.B., Lee S.H. Protocatechualdehyde possesses anti-cancer activity through downregulating cyclin D1 and HDAC2 in human colorectal cancer cells. Biochem. Biophys. Res. Commun. 2013;430:381–386. doi: 10.1016/j.bbrc.2012.11.018. PubMed DOI
Hong S.H., Ismail I.A., Kang S.M., Han D.C., Kwon B.M. Cinnamaldehydes in cancer chemotherapy. Phytother. Res. 2016;30:754–767. doi: 10.1002/ptr.5592. PubMed DOI
Kang H.S., Ock J., Lee H.J., Lee Y.J., Kwon B.M., Hong S.H. Early growth response protein 1 upregulation and nuclear translocation by 2’-benzoyloxycinnamaldehyde induces prostate cancer cell death. Cancer Lett. 2013;329:217–227. doi: 10.1016/j.canlet.2012.11.006. PubMed DOI
Qi G.Y., Chen J., Shi C.R., Wang Y.K., Mi S.S., Shao W.H., Yu X.Y., Ma Y.L., Ling J.P., Huang J. Cinnamic acid (cinn) induces apoptosis and proliferation in human nasopharyngeal carcinoma cells. Cell. Physiol. Biochem. 2016;40:589–596. doi: 10.1159/000452572. PubMed DOI
Munirathinam G., Gray K. Cinnamaldehye, a dietary flavoring agent derived from cinnamon targets prostate cancer cells. Endocr. Rev. 2014;35:1–2. PubMed
Park K.R., Nam D., Yun H.M., Lee S.G., Jang H.J., Sethi G., Cho S.K., Ahn K.S. Beta-caryophyllene oxide inhibits growth and induces apoptosis through the suppression of PI3K/AKT/MTOR/S6K1 pathways and ros-mediated mapks activation. Cancer Lett. 2011;312:178–188. doi: 10.1016/j.canlet.2011.08.001. PubMed DOI
Zu Y.G., Yu H.M., Liang L., Fu Y.J., Efferth T., Liu X., Wu N. Activities of ten essential oils towards propionibacterium acnes and PC-3, A-549 and MCF-7 cancer cells. Molecules. 2010;15:3200–3210. doi: 10.3390/molecules15053200. PubMed DOI PMC
Chandra P., Pandey R., Srivastva M., Rameshkumar K.B., Kumar B. Quantitative determination of chemical constituents of piper spp. Using uplc-esi-ms/ms. Ind. Crop. Prod. 2015;76:967–976. doi: 10.1016/j.indcrop.2015.08.010. DOI
Morris M.E., Zhang S.Z. Flavonoid-drug interactions: Effects of flavonoids on abc transporters. Life Sci. 2006;78:2116–2130. doi: 10.1016/j.lfs.2005.12.003. PubMed DOI
Stevenson D.E., Scheepens A., Hurst R.D. Bioavailability and Metabolism of Dietary Flavonoids—Much Known—Much More to Discover. Nova Science Publishers, Inc.; Hauppauge, NY, USA: 2009. pp. 1–52.
Miron A., Aprotosoaie A.C., Trifan A., Xiao J.B. Flavonoids as modulators of metabolic enzymes and drug transporters. Ann. N. Y. Acad. Sci. 2017;1398:152–167. doi: 10.1111/nyas.13384. PubMed DOI
Moon Y.J., Wang X.D., Morris M.E. Dietary flavonoids: Effects on xenobiotic and carcinogen metabolism. Toxicol. In Vitro. 2006;20:187–210. doi: 10.1016/j.tiv.2005.06.048. PubMed DOI
Venturelli S., Burkard M., Biendl M., Lauer U.M., Frank J., Busch C. Prenylated chalcones and flavonoids for the prevention and treatment of cancer. Nutrition. 2016;32:1171–1178. doi: 10.1016/j.nut.2016.03.020. PubMed DOI
Orjala J., Wright A.D., Behrends H., Folkers G., Sticher O., Ruegger H., Rali T. Cytotoxic and antibacterial dihydrochalcones from piper aduncum. J. Nat. Prod. 1994;57:18–26. doi: 10.1021/np50103a003. PubMed DOI
Tamogami S., Kodama O. Coronatine elicits phytoalexin production in rice leaves (Oryza sativa L.) in the same manner as jasmonic acid. Phytochemistry. 2000;54:689–694. doi: 10.1016/S0031-9422(00)00190-4. PubMed DOI
Koirala N., Thuan N.H., Ghimire G.P., Thang D.V., Sohng J.K. Methylation of flavonoids: Chemical structures, bioactivities, progress and perspectives for biotechnological production. Enzyme Microb. Technol. 2016;86:103–116. doi: 10.1016/j.enzmictec.2016.02.003. PubMed DOI
Wu J.C., Lai C.S., Tsai M.L., Ho C.T., Wang Y.J., Pan M.H. Chemopreventive effect of natural dietary compounds on xenobiotic-induced toxicity. J. Food Drug Anal. 2017;25:176–186. doi: 10.1016/j.jfda.2016.10.019. PubMed DOI PMC
Kumar S., Pandey A.K. Chemistry and biological activities of flavonoids: An overview. Sci. World J. 2013 doi: 10.1155/2013/162750. PubMed DOI PMC
Gao K., Henning S.M., Niu Y.T., Youssefian A.A., Seeram N.P., Xu A.L., Heber D. The citrus flavonoid naringenin stimulates DNA repair in prostate cancer cells. J. Nutr. Biochem. 2006;17:89–95. doi: 10.1016/j.jnutbio.2005.05.009. PubMed DOI
Yang C.S., Landau J.M., Huang M.T., Newmark H.L. Inhibition of carcinogenesis by dietary polyphenolic compounds. Annu. Rev. Nutr. 2001;21:381–406. doi: 10.1146/annurev.nutr.21.1.381. PubMed DOI
Afaq F., Saleem M., Krueger C.G., Reed J.D., Mukhtar H. Anthocyanin- and hydrolyzable tannin-rich pomegranate fruit extract modulates MAPK and NF-kappa b pathways and inhibits skin tumorigenesis in CD-1 mice. Int. J. Cancer. 2005;113:423–433. doi: 10.1002/ijc.20587. PubMed DOI
Williams R.J., Spencer J.P.E., Rice-Evans C. Flavonoids: Antioxidants or signalling molecules? Free Radic. Biol. Med. 2004;36:838–849. doi: 10.1016/j.freeradbiomed.2004.01.001. PubMed DOI
Morel I., Abalea V., Cillard P., Cillard J. Repair of oxidized DNA by the flavonoid myricetin. Methods Enzymol. 2001;335:308–316. PubMed
Lewinska A., Siwak J., Rzeszutek I., Wnuk M. Diosmin induces genotoxicity and apoptosis in DU145 prostate cancer cell line. Toxicol. In Vitro. 2015;29:417–425. doi: 10.1016/j.tiv.2014.12.005. PubMed DOI
Siwak J., Lewinska A., Wnuk M., Bartosz G. Protection of flavonoids against hypochlorite-induced protein modifications. Food Chem. 2013;141:1227–1241. doi: 10.1016/j.foodchem.2013.04.018. PubMed DOI