From mammals back to birds: Host-switch of the acanthocephalan Corynosoma australe from pinnipeds to the Magellanic penguin Spheniscus magellanicus
Language English Country United States Media electronic-ecollection
Document type Journal Article
PubMed
28981550
PubMed Central
PMC5628790
DOI
10.1371/journal.pone.0183809
PII: PONE-D-17-15667
Knihovny.cz E-resources
- MeSH
- Acanthocephala * MeSH
- Ecology MeSH
- Phylogeny MeSH
- Host-Parasite Interactions physiology MeSH
- Fur Seals parasitology MeSH
- Sea Lions parasitology MeSH
- Sex Ratio MeSH
- Spheniscidae parasitology MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
Trophically-transmitted parasites are regularly exposed to potential new hosts through food web interactions. Successful colonization, or switching, to novel hosts, occur readily when 'donor' and 'target' hosts are phylogenetically related, whereas switching between distantly related hosts is rare and may result from stochastic factors (i.e. rare favourable mutations). This study investigates a host-switching event between a marine acanthocephalan specific to pinnipeds that is apparently able to reproduce in Magellanic penguins Spheniscus magellanicus from Brazil. Detailed analysis of morphological and morphometrical data from acanthocephalans from penguins indicates that they belong to Corynosoma australe Johnston, 1937. Partial fragments of the 28S rRNA and mitochondrial cox1 genes were amplified from isolates from penguins and two pinniped species (i.e. South American sea lion Otaria flavescens and South American fur seal Arctocephalus australis) to confirm this identification. Infection parameters clearly differ between penguins and the two pinniped species, which were significantly lower in S. magellanicus. The sex ratio of C. australe also differed between penguins and pinnipeds; in S. magellanicus was strongly biased against males, while in pinnipeds it was close to 1:1. Females of C. australe from O. flavescens were smaller than those from S. magellanicus and A. australis. However, fecundity (i.e. the proportion of fully developed eggs) was lower and more variable in females collected from S. magellanicus. At first glance, the occurrence of reproductive individuals of C. australe in Magellanic penguins could be interpreted as an adaptive colonization of a novel avian host through favourable mutations. However, it could also be considered, perhaps more likely, as an example of ecological fitting through the use of a plesimorphic (host) resource, since the ancestors of Corynosoma infected aquatic birds.
Centro para el Estudio de Sistemas Marinos CESIMAR CENPAT CONICET Puerto Madryn Chubut Argentina
Institute of Parasitology Biology Centre Czech Academy of Sciences České Budějovice Czech Republic
See more in PubMed
Agosta SJ, Janz N, Brooks DR. How generalists can be specialists: resolving the ‘parasite paradox’ and implications for emerging disease. Zoologia. 2010;27:151–162.
Futuyma DJ,. Moreno G. The evolution of ecological specialization. Ann. Rev. Ecol. Syst. 1988;19:207–233.
Gemmill AW, Vinet ME, Read AF. The evolutionary ecology of host-specificity: experimental studies with PubMed
Via S, Hawthorne DJ. The genetic architecture of ecological specialization: Correlated gene effects on host use and habitat choice in pea aphids. Amer. Nat. 2002;159:S76–S88. PubMed
Agosta SJ. On ecological fitting, plant–insect associations, herbivore host shifts, and host plant selection. Oikos. 2006;114:556–565.
Brooks DR, Hoberg EP. Darwin's necessary misfit and the sloshing bucket: the evolutionary biology of emerging infectious diseases. Evol Educ Outreach. 2008;1:2–9.
Combes C. Ethological aspects of parasite transmission. Am Nat. 1991;138:866–880.
Hoberg EP. Congruent and synchronic patterns in biogeography and speciation among seabirds, pinnipeds and cestodes. J Parasitol. 1992;78:601–615. PubMed
Hoberg EP, Adams A. Phylogeny, history and biodiversity: understanding faunal structure and biogeography in the marine realm. Bull Scand Soc Parasitol. 2000;10:19–37.
McQuaid CF, Britton NF. Trophic structure, stability, and parasite persistence threshold in food webs. Bull Math Biol. 2013;75:2196–207. doi: 10.1007/s11538-013-9887-5 PubMed DOI
Ward SA, Leather SR, Pickup J, Harrington R. Mortality during dispersal and the cost of host-specificity in parasites: how many aphids find hosts? J. Anim. Ecol. 1998;67:763–773.
Raga JA, Fernández M, Balbuena JA, Aznar FJ. Parasites In: Perrin WF, Thewissen HGM, Würsing B. San Diego: editors. Encyclopedia of Marine Mammals, second Ed. Academic Press/Elsevier Inc.; 2009:821–830.
Janz N, Nylin S. Butterflies and plants: a phylogenetic study. Evolution. 1998;52:486–502. doi: 10.1111/j.1558-5646.1998.tb01648.x PubMed DOI
Brooks DR, McLennan DA, León-Règagnon V, Zelmer D. Ecological fitting as a determinant of parasite community structure. Ecology. 2006;87:S76–S85. PubMed
Agosta SJ, Klemens JA. Ecological fitting by phenotypically flexible genotypes: implications for species associations, community assembly and evolution. Ecol. Lett. 2008;11:1123–1134. doi: 10.1111/j.1461-0248.2008.01237.x PubMed DOI
Brooks DR, Hoberg EP. The emerging infectious disease crisis and pathogen pollution: a question of ecology and evolution In: Rohde K. editor. The balance of nature and human impact. Cambridge: Cambridge University Press; 2013. pp. 215–229.
Janzen DH. On ecological fitting. Oikos. 1985;45:308–310.
Aznar FJ, Pérez-Ponce de León G, Raga JA. Status of PubMed DOI
Amin OM. Classification of the Acanthocephala. Folia Parasitol. 2013;60:273–305. PubMed
Machado-Filho DA. Nova espécie do gênero
Noronha D.
Valtonen ET, Niinimaa A. Dispersion and frequency distribution of Corynosoma spp. (Acanthocephala) in the fish of the Bothnian Bay. Aquilo Ser Zool. 1983;22:1–11.
Zdzitowiecki K, Presler P. Occurrence of Acanthocephala in intermediate hosts, Amphipoda, in Admiralty Bay, South Shetland Islands, Antarctica. Polish Polar Res. 2001;22:205–212.
Laskowski Z, Zdzitowiecki K. The helminth fauna of some notothenioid fishes collected from the shelf of Argentine Islands, West Antarctica. Pol Polar Res. 2005;26:315–324.
Hernández-Orts JS. Taxonomy and ecology of metazoan parasites of otariids from Patagonia, Argentina: adult and infective stages. PhD thesis. Valencia, Spain: University of Valencia; 2013.
Petrochenko, 1958 Petrochenko VI. Acanthocephala of Domestic and Wild Animals. Vol. I Izdatel’stvo Akademii Nauk SSSR: Moscow; 1958.
Yamaguti S. Systema Helminthum Volume V: Acanthocephala. Interscience Publisher: New York; 1963.
Aznar FJ, Hernández-Orts J, Suarez AA, García-Varela M, Raga JA, Cappozzo HL. A ssessing host-parasite specificity through coprological analysis: a case study with species of PubMed
Hoberg EP. Aspects of ecology and biogeography of Acanthocephala in Antarctic seabirds. Ann Parasitol Hum Comp. 1986;61:199–214.
Zdzitowiecki K. Acanthocephala of the Antarctic. Polish Polar Res. 1986;7:79–117.
Margolis L, Groff JM, Johnson SC, McDonald TE, Kent ML, Blaylock RB. Helminth parasites of sea otters (
Schmidt G. Acanthocephalan infections of man, with two new records. J Parasitol. 1971;57:582–584. PubMed
Richardson DJ, Cole RA. Acanthocephala of the bald eagle ( PubMed
Smales LR. Polymorphidae (Acanthocephala) from Australian mammals with descriptions of two new species. Syst Parasitol. 1986;8:91–100.
Silva RZ, Cousin JCB, Pereira J Jr.
Stryukov AA. Invasion of Antarctic phocids seals by acanthocephals. Vestn Zool. 2004;38:23–29 (In Russian).
Zdzitowiecki K. Some antarctic acanthocephalans of the genus
Nickol BB, Helle E, Valtonen ET. PubMed DOI
Hernández-Orts JS, Smales LR, Pinacho-Pinacho CD, García-Varela M, Presswell B. Novel morphological and molecular data for PubMed DOI
Mattiucci S, Nascetti G. Advances and trends in the molecular systematics of anisakid nematodes, with implications for their evolutionary ecology and host-parasite co-evolutionary processes. Adv Parasit. 2008;66:47–148. PubMed
Sardella NH, Mattiucci S, Timi JT, Bastida RO, Rodríguez DH, Nascetti G. PubMed DOI
Van Cleave HJ. A preliminary analysis of the acanthocephalan genus PubMed
Hernández-Orts JS, Montero FE, Juan-García A, García NA, Crespo EA, Raga JA, Aznar FJ. Intestinal helminth fauna of the South American sea lion PubMed DOI
Schiavini A, Yorio P, Gandini P, Raya Rey A, Dee Boersma P. Los pingüinos de las costas argentinas: estado poblacional y conservación. Hornero 2005;20:5–23.
Aznar FJ, Cappozzo HL, Taddeo D, Montero FE, Raga JA. Recruitment, population structure, and habitat selection of
Hernández-Orts JS, Timi JT, Raga JA, García-Varela M, Crespo EA, Aznar FJ. Patterns of trunk spine growth in two congeneric species of acanthocephalan: investment in attachment may differ between sexes and species. Parasitology. 2012;7:945–955. PubMed
Aznar FJ, Bush AO, Balbuena JA, Raga JA. PubMed DOI
Georgieva S, Selbach C, Faltýnková A, Soldánová M, Sures B, Skírnisson K, Kostadinova A. New cryptic species of the “ PubMed DOI PMC
Bray RA, Waeschenbach A, Cribb TH, Weedall GD, Dyal P, Littlewood DTJ. The phylogeny of the Lepocreadioidea (Platyhelminthes, Digenea) inferred from nuclear and mitochondrial genes: Implications for their systematics and evolution. Acta Parasitol. 2009;54:310–329.
Tkach VV, Grabda-Kazubska B, Pawlowski J, Swiderski Z. Molecular and morphological evidences for close phylogenetic affinities of the genera
Nadler SA, Bolotin E, Stock SP. Phylogenetic relationships of PubMed DOI
Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R. DNA primers for amplification of mitochondrial cytochrome PubMed
Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33:1870–1874. doi: 10.1093/molbev/msw054 PubMed DOI PMC
García-Varela M, Pérez-Ponce de León G, Aznar FJ, Nadler SA. Phylogenetic relationship among genera of Polymorphidae (Acanthocephala), inferred from nuclear and mitochondrial gene sequences. Mol Phylogenet Evol. 2013;68:176–184. doi: 10.1016/j.ympev.2013.03.029 PubMed DOI
García-Varela M, Nadler SA. Phylogenetic relationships of Palaeacanthocephala (Acanthocephala) inferred from SSU and LSU rDNA gene sequences. J Parasitol. 2005;91:1401–1409. doi: 10.1645/GE-523R.1 PubMed DOI
García-Varela M, Nadler SA. Phylogenetic relationships among Syndermata inferred from nuclear and mitochondrial gene sequences. Mol Phylogenet Evol. 2006;40:61–72. doi: 10.1016/j.ympev.2006.02.010 PubMed DOI
García-Varela M, Pérez-Ponce de León G, Aznar FJ, Nadler SA. Systematic position of PubMed DOI
García-Varela M, Pérez-Ponce de León G. Validating the systematic position of PubMed DOI
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80. doi: 10.1093/molbev/mst010 PubMed DOI PMC
Li W, Cowley A, Uludag M, Gur T, McWilliam H, Squizzato S, et al. The EMBL-EBI bioinformatics web and programmatic tools framework. Nucleic Acids Res. 2015;43:W580–584. doi: 10.1093/nar/gkv279 PubMed DOI PMC
Telford MJ, Herniou EA, Russell RB, Littlewood DTJ. Changes in mitochondrial genetic codes as phylogenetic characters: two examples from the flatworms. Proc Natl Acad Sci USA. 2000;97:11359–11364. doi: 10.1073/pnas.97.21.11359 PubMed DOI PMC
Darriba D, Taboada GL, Doallo R, Posada D. ModelTest 2: more models, new heuristics and parallel computing. Nat Methods. 2012;9:772. PubMed PMC
Sugiura N. Further analysis of the data by Akaike’s information criterion and the finite corrections. Commun Stat Theory Methods. 1978;7:13–26.
Hurvich CM, Tsai CL. Regression and time series model selection in small samples. Biometrika. 1989;76:297–307.
Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012;61:539–542. doi: 10.1093/sysbio/sys029 PubMed DOI PMC
Miller MA, Pfeiffer W, Schwartz T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. New Orleans, United Stages: Proceedings of the Gateway Computing Environments Workshop (GCE); 2010.
Rambaut A, Drummond AJ. Tracer v1.5; 2009. Available from http://beast.bio.ed.ac.uk/Tracer.
Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate Maximum-Likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 2010;59:307–321. doi: 10.1093/sysbio/syq010 PubMed DOI
Rambaut A. FigTree v. 1.4. Molecular evolution, phylogenetics and epidemiology. Edinburgh, UK: University of Edinburgh, Institute of Evolutionary Biology; 2012. http://tree.bio.ed.ac.uk/software/figtree/.
Bush AD, Lafferty KD, Lotz JM, Shostak AW. Parasitology meets ecology on its own terms: Margolis et al. revised. J Parasitol. 1997;84:575–583. PubMed
Rózsa L, Reiczigel J, Majoros G. Quantifying parasites in samples of hosts. J Parasitol. 2000;86:228–232. doi: 10.1645/0022-3395(2000)086[0228:QPISOH]2.0.CO;2 PubMed DOI
Reiczigel J. Confidence intervals for the bionomial parameter: some new considerations. Stat. Med. 2003;22:611–621. doi: 10.1002/sim.1320 PubMed DOI
Reiczigel J, Rozsa L, Reiczigel A, Fabian I. Quantitative Parasitology v1.0.13; 2013. Available from http://www2.univet.hu/qpweb
Conover WJ. Practical Nonparametric Statics. 3rd edition New York: Wiley and Sons; 1999.
Anderson MJ, Gorley RN, Clarke KR. PERMANOVA+ for PRIMER: Guide to software and statistical methods. Plymouth: PRIMER-E; 2008.
Johnston TH, Mawson PM. Nematodes from Australian marine mammals. Rec South Aust Mus. 1941;6:429–434.
Johnston TH. Entozoa from the Australian hair seal. Proc Linn Soc NSW. 1937;62:9–16.
Johnston JT, Edmonds SJ. Acanthocephala from Auckland and Campbell islands. Rec Domin Mus. 1953;2:55–61.
Morini EG, Boero JJ.
Brandão ML, Moreira J, Luque JL. Checklist of Platyhelminthes, Acanthocephala, Nematoda and Arthropoda parasitizing penguins of the world. Check List. 2014;10:562–573.
Boero JJ, Led JE, Brandetti E. Algunos parásitos de la avifauna Argentina. Analecta Vet. 1972;4:17–32.
Diaz J, Cremonte F, Navone GT. Helminths of the Magellanic penguin,
Spalding MD, Fox HE, Allen GR, Davidson N, Ferdaña ZA, Finlayson M et al. Marine ecoregions of the world: abioregionalization of coastal and shelf areas. Bioscience. 2007;57:573–583.
Silva RZ, Pereira J. Jr, Cousin JCB: Histological patterns of the intestinal attachment of PubMed DOI PMC
Luque JL, Poulin R. Use of fish as intermediate hosts by helminth parasites: A comparative analysis. Acta Parasitol. 2004;49:353–361.
Koen-Alonso M, Crespo EA, Pedraza SN, García NA, Coscarella MA. Food habits of the South American sea lion, Otaria flavescens, off Patagonia, Argentina. Fish Bull. 2000;98:250–263.
Naya DE, Arim M, Vargas R. Diet of South American fur seals (
Knoff M, São Clemente SC, Pinto RM, Gomes DC. Digenea and Acanthocephala of elasmobranch fishes from the southern coast of Brazil. Mem Inst Oswaldo Cruz. 2001;96:1095–1101. PubMed
Scolaro JA, Badano LA. Diet of the Magellanic penguin
Frere E, Gandini P, Lichtscheln V. Variación latitudinal en la dieta del pinguino de Magallanes (
Scolaro JA, Wilson RP, Laurenti S, Kierspel MA, Gallelli H, Upton JA. Feeding preferences of the Magellanic penguin
Timi JT, Poulin R. Parasite community structure within and across host populations of a marine pelagic fish: How repeatable is it? Int J Parasitol. 2003;33:1353–1362. PubMed
Carballo MC, Cremonte F, Navone GT, Timi JT. Similarity in parasite community structure may be used to trace latitudinal migrations of PubMed DOI
González AF, Pascual S, Gestal C, Abollo E, Guerra A. What makes a cephalopod a suitable host for parasite? The case of Galician waters. Fish Res. 2003;60:177–183.
Valtonen ET, Helle E. Experimental infection of laboratory rats with PubMed
Crompton DW. Reproduction In: Crompton DWT, Nickol BB, editors. Biology of the Acanthocephala. Cambridge: Cambridge University Press; 1985. pp. 213–271.
Helle E, Valtonen ET. On the occurrence of
Pütz K, Schiavini A, Raya Rey A, Lüthi BH. Winter migration of magellanic penguins (
García-Borboroglu P, Boersma PD, Ruoppolo V, Pinho-da-Silva-Filho R, Corrado-Adornes A, Conte-Sena D, et al. Magellanic penguin mortality in 2008 along the SW Atlantic coast. Marine Poll Bull. 2010;60:1652–1657. PubMed
Mateu P, Raga JA, Aznar FJ. Host specificity of PubMed DOI
Fraija-Fernández N, Olson PD, Crespo EA, Raga JA, Aznar FJ, Fernández M. Independent host switching events by digenean parasites of cetaceans inferred from ribosomal DNA. Int J Parasitol. 2015;45:167–173. doi: 10.1016/j.ijpara.2014.10.004 PubMed DOI
Nadler SA, D'Amelio S, Fagerholm HP, Berland B, Paggi L. Phylogenetic relationships among species of PubMed
Gregori M, Aznar FJ, Abollo E, Roura A, González A, Pascual S. PubMed DOI