Self-Regulatory Capacities Are Depleted in a Domain-Specific Manner
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article
PubMed
29033798
PubMed Central
PMC5625007
DOI
10.3389/fnsys.2017.00070
Knihovny.cz E-resources
- Keywords
- EEG, backward inhibition, ego depletion, neurophysiology, task switching,
- Publication type
- Journal Article MeSH
Performing an act of self-regulation such as making decisions has been suggested to deplete a common limited resource, which impairs all subsequent self-regulatory actions (ego depletion theory). It has however remained unclear whether self-referred decisions truly impair behavioral control even in seemingly unrelated cognitive domains, and which neurophysiological mechanisms are affected by these potential depletion effects. In the current study, we therefore used an inter-individual design to compare two kinds of depletion, namely a self-referred choice-based depletion and a categorization-based switching depletion, to a non-depleted control group. We used a backward inhibition (BI) paradigm to assess the effects of depletion on task switching and associated inhibition processes. It was combined with EEG and source localization techniques to assess both behavioral and neurophysiological depletion effects. The results challenge the ego depletion theory in its current form: Opposing the theory's prediction of a general limited resource, which should have yielded comparable effects in both depletion groups, or maybe even a larger depletion in the self-referred choice group, there were stronger performance impairments following a task domain-specific depletion (i.e., the switching-based depletion) than following a depletion based on self-referred choices. This suggests at least partly separate and independent resources for various cognitive control processes rather than just one joint resource for all self-regulation activities. The implications are crucial to consider for people making frequent far-reaching decisions e.g., in law or economy.
See more in PubMed
Allport A., Wylie G. (1999). “Task-switching: positive and negative priming of task-set,” in Attention, Space and Action: Studies in Cognitive Neuroscience, eds Humphreys G. W., Duncan J., Treisman A. M. (Oxford: Oxford University Press; ), 273–296.
Allport A., Styles E. A., Hsieh S. (1994). “Shifting intentional set: exploring the dynamic control of task,” in Attention and Performance XV: Conscious and Nonconscious Information Processing, eds Umiltà C., Moscovitch M. (Cambridge, MA: MIT Press; ), 421–452.
Baumeister R. F. (2002). Yielding to temptation: self-control failure, impulsive purchasing, and consumer behavior. J. Consum. Res. 28, 670–676. 10.1086/338209 DOI
Baumeister R. F. (2003). Ego depletion and self-regulation failure: a resource model of self-control. Alcohol. Clin. Exp. Res. 27, 281–284. 10.1097/01.alc.0000060879.61384.a4 PubMed DOI
Baumeister R. F. (2014). Self-regulation, ego depletion, and inhibition. Neuropsychologia 65, 313–319. 10.1016/j.neuropsychologia.2014.08.012 PubMed DOI
Baumeister R. F., Bratslavsky E., Muraven M., Tice D. M. (1998). Ego depletion: is the active self a limited resource? J. Pers. Soc. Psychol. 74, 1252–1265. 10.1037/0022-3514.74.5.1252 PubMed DOI
Baumeister R. F., Gailliot M., DeWall C. N., Oaten M. (2006). Self-regulation and personality: how interventions increase regulatory success, and how depletion moderates the effects of traits on behavior. J. Pers. 74, 1773–1802. 10.1111/j.1467-6494.2006.00428.x PubMed DOI
Beste C., Baune B. T., Falkenstein M., Konrad C. (2010a). Variations in the TNF-α gene (TNF-α -308G→A) affect attention and action selection mechanisms in a dissociated fashion. J. Neurophysiol. 104, 2523–2531. 10.1152/jn.00561.2010 PubMed DOI
Beste C., Heil M., Domschke K., Konrad C. (2010b). The relevance of the functional 5-HT1A receptor polymorphism for attention and working memory processes during mental rotation of characters. Neuropsychologia 48, 1248–1254. 10.1016/j.neuropsychologia.2009.12.025 PubMed DOI
Beste C., Kneiphof J., Woitalla D. (2015). Effects of fatigue on cognitive control in neurosarcoidosis. Eur. Neuropsychopharmacol. 25, 522–530. 10.1016/j.euroneuro.2015.01.012 PubMed DOI
Beste C., Mückschel M., Rosales R., Domingo A., Lee L., Ng A., et al. . (2017). The basal ganglia striosomes affect the modulation of conflicts by subliminal information-evidence from X-linked dystonia Parkinsonism. Cereb. Cortex [Epub ahead of print]. 10.1093/cercor/bhx125 PubMed DOI
Boksem M. A. S., Meijman T. F., Lorist M. M. (2006). Mental fatigue, motivation and action monitoring. Biol. Psychol. 72, 123–132. 10.1016/j.biopsycho.2005.08.007 PubMed DOI
Bruyneel S., Dewitte S., Vohs K. D., Warlop L. (2006). Repeated choosing increases susceptibility to affective product features. Int. J. Res. Mark. 23, 215–225. 10.1016/j.ijresmar.2005.12.002 DOI
Carter E. C., Kofler L. M., Forster D. E., McCullough M. E. (2015). A series of meta-analytic tests of the depletion effect: self-control does not seem to rely on a limited resource. J. Exp. Psychol. Gen. 144, 796–815. 10.1037/xge0000083 PubMed DOI
Chambers C. D., Stokes M. G., Janko N. E., Mattingley J. B. (2006). Enhancement of visual selection during transient disruption of parietal cortex. Brain Res. 1097, 149–155. 10.1016/j.brainres.2006.04.084 PubMed DOI
Chen A. C., Welsh R. C., Liberzon I., Taylor S. F. (2010). “Do I like this person?” A network analysis of midline cortex during a social preference task. Neuroimage 51, 930–939. 10.1016/j.neuroimage.2010.02.044 PubMed DOI PMC
Cohen M. X. (2014). Analyzing Neural Time Series Data: Theory and Practice. Cambridge, MA: MIT Press.
Converse P. D., DeShon R. P. (2009). A tale of two tasks: reversing the self-regulatory resource depletion effect. J. Appl. Psychol. 94, 1318–1324. 10.1037/a0014604 PubMed DOI
Costa R. E., Friedrich F. J. (2012). Inhibition, interference, and conflict in task switching. Psychon. Bull. Rev. 19, 1193–1201. 10.3758/s13423-012-0311-1 PubMed DOI
Crowley K. E., Colrain I. M. (2004). A review of the evidence for P2 being an independent component process: age, sleep and modality. Clin. Neurophysiol. 115, 732–744. 10.1016/j.clinph.2003.11.021 PubMed DOI
Dewitte S., Bruyneel S., Geyskens K. (2009). Self-regulating enhances self-regulation in subsequent consumer decisions involving similar response conflicts. J. Consum. Res. 36, 394–405. 10.1086/598615 DOI
Diamond A. (2013). Executive functions. Annu. Rev. Psychol. 64, 135–168. 10.1146/annurev-psych-113011-143750 PubMed DOI PMC
Dippel G., Beste C. (2015). A causal role of the right inferior frontal cortex in implementing strategies for multi-component behaviour. Nat. Commun. 6:6587. 10.1038/ncomms7587 PubMed DOI
Dippel G., Chmielewski W., Mückschel M., Beste C. (2016). Response mode-dependent differences in neurofunctional networks during response inhibition: an EEG-beamforming study. Brain Struct. Funct. 221, 4091–4101. 10.1007/s00429-015-1148-y PubMed DOI
Faber L. G., Maurits N. M., Lorist M. M. (2012). Mental fatigue affects visual selective attention. PLoS One 7:e48073. 10.1371/journal.pone.0048073 PubMed DOI PMC
Folstein J. R., Van Petten C. (2008). Influence of cognitive control and mismatch on the N2 component of the ERP: a review. Psychophysiology 45, 152–170. 10.1111/j.1469-8986.2007.00602.x PubMed DOI PMC
Fuchs M., Kastner J., Wagner M., Hawes S., Ebersole J. S. (2002). A standardized boundary element method volume conductor model. Clin. Neurophysiol. 113, 702–712. 10.1016/s1388-2457(02)00030-5 PubMed DOI
Gajewski P. D., Falkenstein M. (2011). Diversity of the P3 in the task-switching paradigm. Brain Res. 1411, 87–97. 10.1016/j.brainres.2011.07.010 PubMed DOI
Gajewski P. D., Hengstler J. G., Golka K., Falkenstein M., Beste C. (2011). The Met-allele of the BDNF Val66Met polymorphism enhances task switching in elderly. Neurobiol. Aging 32, 2327.e7–2327.e19. 10.1016/j.neurobiolaging.2011.06.010 PubMed DOI
Gajewski P. D., Kleinsorge T., Falkenstein M. (2010). Electrophysiological correlates of residual switch costs. Cortex 46, 1138–1148. 10.1016/j.cortex.2009.07.014 PubMed DOI
García-Larrea L., Lukaszewicz A. C., Mauguière F. (1992). Revisiting the oddball paradigm. Non-target vs. neutral stimuli and the evaluation of ERP attentional effects. Neuropsychologia 30, 723–741. 10.1016/0028-3932(92)90042-k PubMed DOI
Geng J. J., Vossel S. (2013). Re-evaluating the role of TPJ in attentional control: contextual updating? Neurosci. Biobehav. Rev. 37, 2608–2620. 10.1016/j.neubiorev.2013.08.010 PubMed DOI PMC
Giesbrecht B., Woldorff M. G., Song A. W., Mangun G. R. (2003). Neural mechanisms of top-down control during spatial and feature attention. Neuroimage 19, 496–512. 10.1016/s1053-8119(03)00162-9 PubMed DOI
Gratton G., Coles M. G., Donchin E. (1992). Optimizing the use of information: strategic control of activation of responses. J. Exp. Psychol. Gen. 121, 480–506. 10.1037//0096-3445.121.4.480 PubMed DOI
Hagger M. S., Chatzisarantis N. L. D., Alberts H., Anggono C. O., Batailler C., Birt A. R., et al. . (2016). A multilab preregistered replication of the ego-depletion effect. Perspect. Psychol. Sci. 11, 546–573. 10.1177/1745691616652873 PubMed DOI
Hagger M. S., Wood C., Stiff C., Chatzisarantis N. L. D. (2010). Ego depletion and the strength model of self-control: a meta-analysis. Psychol. Bull. 136, 495–525. 10.1037/a0019486 PubMed DOI
Herrmann C. S., Knight R. T. (2001). Mechanisms of human attention: event-related potentials and oscillations. Neurosci. Biobehav. Rev. 25, 465–476. 10.1016/s0149-7634(01)00027-6 PubMed DOI
Hillyard S. A., Anllo-Vento L. (1998). Event-related brain potentials in the study of visual selective attention. Proc. Natl. Acad. Sci. U S A 95, 781–787. 10.1073/pnas.95.3.781 PubMed DOI PMC
Hofmann W., Schmeichel B. J., Baddeley A. D. (2012). Executive functions and self-regulation. Trends Cogn. Sci. 16, 174–180. 10.1016/j.tics.2012.01.006 PubMed DOI
Hopstaken J. F., van der Linden D., Bakker A. B., Kompier M. A. J., Leung Y. K. (2016). Shifts in attention during mental fatigue: evidence from subjective, behavioral, physiological, and eye-tracking data. J. Exp. Psychol. Hum. Percept. Perform. 42, 878–889. 10.1037/xhp0000189 PubMed DOI
Inzlicht M., Schmeichel B. J. (2012). What is ego depletion? Toward a mechanistic revision of the resource model of self-control. Perspect. Psychol. Sci. 7, 450–463. 10.1177/1745691612454134 PubMed DOI
Job V., Dweck C. S., Walton G. M. (2010). Ego depletion—is it all in your head? implicit theories about willpower affect self-regulation. Psychol. Sci. 21, 1686–1693. 10.1177/0956797610384745 PubMed DOI
Karch S., Feuerecker R., Leicht G., Meindl T., Hantschk I., Kirsch V., et al. . (2010). Separating distinct aspects of the voluntary selection between response alternatives: N2- and P3-related BOLD responses. Neuroimage 51, 356–364. 10.1016/j.neuroimage.2010.02.028 PubMed DOI
Koch I., Gade M., Philipp A. M. (2004). Inhibition of response mode in task switching. Exp. Psychol. 51, 52–58. 10.1027/1617-3169.51.1.52 PubMed DOI
Lorist M. M., Bezdan E., ten Caat M., Span M. M., Roerdink J. B. T. M., Maurits N. M. (2009). The influence of mental fatigue and motivation on neural network dynamics; an EEG coherence study. Brain Res. 1270, 95–106. 10.1016/j.brainres.2009.03.015 PubMed DOI
Lorist M. M., Boksem M. A. S., Ridderinkhof K. R. (2005). Impaired cognitive control and reduced cingulate activity during mental fatigue. Cogn. Brain Res. 24, 199–205. 10.1016/j.cogbrainres.2005.01.018 PubMed DOI
Lorist M. M., Klein M., Nieuwenhuis S., De Jong R., Mulder G., Meijman T. F. (2000). Mental fatigue and task control: planning and preparation. Psychophysiology 37, 614–625. 10.1111/1469-8986.3750614 PubMed DOI
Luck S. J., Chelazzi L., Hillyard S. A., Desimone R. (1997). Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. J. Neurophysiol. 77, 24–42. PubMed
Luck S. J., Heinze H. J., Mangun G. R., Hillyard S. A. (1990). Visual event-related potentials index focused attention within bilateral stimulus arrays. II. Functional dissociation of P1 and N1 components. Electroencephalogr. Clin. Neurophysiol. 75, 528–542. 10.1016/0013-4694(90)90139-b PubMed DOI
Mayr U., Keele S. W. (2000). Changing internal constraints on action: the role of backward inhibition. J. Exp. Psychol. Gen. 129, 4–26. 10.1037/0096-3445.129.1.4 PubMed DOI
Mazziotta J., Toga A., Evans A., Fox P., Lancaster J., Zilles K., et al. . (2001). A probabilistic atlas and reference system for the human brain: international consortium for brain mapping (ICBM). Philos. Trans. R. Soc. Lond. B Boil. Sci. 356, 1293–1322. 10.1098/rstb.2001.0915 PubMed DOI PMC
Mende-Siedlecki P., Todorov A. (2016). Neural dissociations between meaningful and mere inconsistency in impression updating. Soc. Cogn. Affect. Neurosci. 11, 1489–1500. 10.1093/scan/nsw058 PubMed DOI PMC
Miyake A., Friedman N. P., Emerson M. J., Witzki A. H., Howerter A., Wager T. D. (2000). The unity and diversity of executive functions and their contributions to complex “Frontal Lobe” tasks: a latent variable analysis. Cogn. Psychol. 41, 49–100. 10.1006/cogp.1999.0734 PubMed DOI
Möckel T., Beste C., Wascher E. (2015). The effects of time on task in response selection—an ERP study of mental fatigue. Sci. Rep. 5:10113. 10.1038/srep10113 PubMed DOI PMC
Moller A. C., Deci E. L., Ryan R. M. (2006). Choice and ego-depletion: the moderating role of autonomy. Pers. Soc. Psychol. Bull. 32, 1024–1036. 10.1177/0146167206288008 PubMed DOI
Mückschel M., Stock A.-K., Beste C. (2014). Psychophysiological mechanisms of interindividual differences in goal activation modes during action cascading. Cereb. Cortex 24, 2120–2129. 10.1093/cercor/bht066 PubMed DOI
Nunez P. L., Pilgreen K. L. (1991). The spline-Laplacian in clinical neurophysiology: a method to improve EEG spatial resolution. J. Clin. Neurophysiol. 8, 397–413. 10.1097/00004691-199110000-00005 PubMed DOI
Oh H., Leung H.-C. (2010). Specific and nonspecific neural activity during selective processing of visual representations in working memory. J. Cogn. Neurosci. 22, 292–306. 10.1162/jocn.2009.21250 PubMed DOI
Parasuraman R. (1979). Memory load and event rate control sensitivity decrements in sustained attention. Science 205, 924–927. 10.1126/science.472714 PubMed DOI
Pascual-Marqui R. D. (2002). Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find. Exp. Clin. Pharmacol. 24, 5–12. PubMed
Pessoa L., Rossi A., Japee S., Desimone R., Ungerleider L. G. (2009). Attentional control during the transient updating of cue information. Brain Res. 1247, 149–158. 10.1016/j.brainres.2008.10.010 PubMed DOI PMC
Polich J. (2007). Updating P300: an integrative theory of P3a and P3b. Clin. Neurophysiol. 118, 2128–2148. 10.1016/j.clinph.2007.04.019 PubMed DOI PMC
Schneider D., Beste C., Wascher E. (2012). On the time course of bottom-up and top-down processes in selective visual attention: an EEG study. Psychophysiology 49, 1492–1503. 10.1111/j.1469-8986.2012.01462.x PubMed DOI
Sekihara K., Sahani M., Nagarajan S. S. (2005). Localization bias and spatial resolution of adaptive and non-adaptive spatial filters for MEG source reconstruction. Neuroimage 25, 1056–1067. 10.1016/j.neuroimage.2004.11.051 PubMed DOI PMC
Seo H., Lee D. (2007). Temporal filtering of reward signals in the dorsal anterior cingulate cortex during a mixed-strategy game. J. Neurosci. 27, 8366–8377. 10.1523/JNEUROSCI.2369-07.2007 PubMed DOI PMC
Sinai M., Goffaux P., Phillips N. A. (2007). Cue- versus response-locked processes in backward inhibition: evidence from ERPs. Psychophysiology 44, 596–609. 10.1111/j.1469-8986.2007.00527.x PubMed DOI
Stern E. R., Gonzalez R., Welsh R. C., Taylor S. F. (2010). Updating beliefs for a decision: neural correlates of uncertainty and underconfidence. J. Neurosci. 30, 8032–8041. 10.1523/JNEUROSCI.4729-09.2010 PubMed DOI PMC
Sugimoto F., Katayama J. (2013). Somatosensory P2 reflects resource allocation in a game task: assessment with an irrelevant probe technique using electrical probe stimuli to shoulders. Int. J. Psychophysiol. 87, 200–204. 10.1016/j.ijpsycho.2013.01.007 PubMed DOI
Tuk M. A., Zhang K., Sweldens S. (2015). The propagation of self-control: self-control in one domain simultaneously improves self-control in other domains. J. Exp. Psychol. Gen. 144, 639–654. 10.1037/xge0000065 PubMed DOI
Twomey D. M., Murphy P. R., Kelly S. P., O’Connell R. G. (2015). The classic P300 encodes a build-to-threshold decision variable. Eur. J. Neurosci. 42, 1636–1643. 10.1111/ejn.12936 PubMed DOI
van Veen V., Carter C. S. (2002). The anterior cingulate as a conflict monitor: fMRI and ERP studies. Physiol. Behav. 77, 477–482. 10.1016/s0031-9384(02)00930-7 PubMed DOI
Verleger R., Heide W., Butt C., Kömpf D. (1994). Reduction of P3b in patients with temporo-parietal lesions. Cogn. Brain Res. 2, 103–116. 10.1016/0926-6410(94)90007-8 PubMed DOI
Verleger R., Jaśkowski P., Wascher E. (2005). Evidence for an integrative role of P3b in linking reaction to perception. J. Psychophysiol. 19, 165–181. 10.1027/0269-8803.19.3.165 DOI
Vohs K. D., Baumeister R. F., Schmeichel B. J., Twenge J. M., Nelson N. M., Tice D. M. (2008). Making choices impairs subsequent self-control: a limited-resource account of decision making, self-regulation, and active initiative. J. Pers. Soc. Psychol. 94, 883–898. 10.1037/0022-3514.94.5.883 PubMed DOI
Wolff N., Mückschel M., Beste C. (2017). Neural mechanisms and functional neuroanatomical networks during memory and cue-based task switching as revealed by residue iteration decomposition (RIDE) based source localization. Brain Struct. Funct. [Epub ahead of print]. 10.1007/s00429-017-1437-8 PubMed DOI
Wolff N., Roessner V., Beste C. (2016). Behavioral and neurophysiological evidence for increased cognitive flexibility in late childhood. Sci. Rep. 6:28954. 10.1038/srep28954 PubMed DOI PMC
Zhang R., Stock A.-K., Beste C. (2016a). The neurophysiological basis of reward effects on backward inhibition processes. Neuroimage 142, 163–171. 10.1016/j.neuroimage.2016.05.080 PubMed DOI
Zhang R., Stock A.-K., Fischer R., Beste C. (2016b). The system neurophysiological basis of backward inhibition. Brain Struct. Funct. 221, 4575–4587. 10.1007/s00429-016-1186-0 PubMed DOI