Improved electrochemical properties of morphology-controlled titania/titanate nanostructures prepared by in-situ hydrothermal surface modification of self-source Ti substrate for high-performance supercapacitors
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29038427
PubMed Central
PMC5643498
DOI
10.1038/s41598-017-11346-2
PII: 10.1038/s41598-017-11346-2
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Ti substrate surface is modified into two-dimensional (2D) TiO2 nanoplatelet or one-dimensional (1D) nanorod/nanofiber (or a mixture of both) structure in a controlled manner via a simple KOH-based hydrothermal technique. Depending on the KOH concentration, different types of TiO2 nanostructures (2D platelets, 1D nanorods/nanofibers and a 2D+1D mixed sample) are fabricated directly onto the Ti substrate surface. The novelty of this technique is the in-situ modification of the self-source Ti surface into titania nanostructures, and its direct use as the electrochemical microelectrode without any modifications. This leads to considerable improvement in the interfacial properties between metallic Ti and semiconducting TiO2. Since interfacial states/defects have profound effect on charge transport properties of electronic/electrochemical devices, therefore this near-defect-free interfacial property of Ti-TiO2 microelectrode has shown high supercapacitive performances for superior charge-storage devices. Additionally, by hydrothermally tuning the morphology of titania nanostructures, the electrochemical properties of the electrodes are also tuned. A Ti-TiO2 electrode comprising of a mixture of 2D-platelet+1D-nanorod structure reveals very high specific capacitance values (~7.4 mF.cm-2) due to the unique mixed morphology which manifests higher active sites (hence, higher utilization of the active materials) in terms of greater roughness at the 2D-platelet structures and higher surface-to-volume-ratio in the 1D-nanorod structures.
Zobrazit více v PubMed
Banerjee AN. The design, fabrication, and photocatalytic utility of nanostructured semiconductors: focus on TiO2-based nanostructures. Nanotechnol. Sci. Appl. 2011;4:35–65. doi: 10.2147/NSA.S9040. PubMed DOI PMC
Anitha VC, Banerjee AN, Joo SW. Recent developments in TiO2 as n- and p-type transparent semiconductors: synthesis, modification, properties, and energy-related applications. J. Mater. Sci. 2015;50:7495–7536. doi: 10.1007/s10853-015-9303-7. DOI
Roy P, Berger S, Schmuki P. TiO2 nanotubes: synthesis and applications. Angew Chem. Int. Ed. 2011;50:2904–2939. doi: 10.1002/anie.201001374. PubMed DOI
Linsebigler AL, Lu G, Yates JT., Jr. Photocatalysis on TiO2 surfaces: principles, mechanism, and selected results. Chem. Rev. 1995;95:735–758. doi: 10.1021/cr00035a013. DOI
Anitha VC, Banerjee AN, Joo SW, Min BK. Morphology-dependent low macroscopic field emission properties of titania/titanate nanorods synthesized by alkali-controlled hydrothermal treatment of metallic Ti surface. Nanotechnology. 2015;26:355705. doi: 10.1088/0957-4484/26/35/355705. PubMed DOI
Anitha VC, et al. Biofilm formation on a TiO2 nanotube with controlled pore diameter and surface wettability. Nanotechnology. 2015;26:065102. doi: 10.1088/0957-4484/26/6/065102. PubMed DOI
Banerjee AN, Joo SW, Min BK. Photocatalytic degradation of organic dye by sol-gel-derived gallium-doped anatase titanium oxide nanoparticles for environment remediation. J. Nanomater. 2012;2012:201492. doi: 10.1155/2012/201492. DOI
Anitha VC, Banerjee AN, Dillip GR, Joo SW, Min BK. Nonstoichiometry-induced enhancement of electrochemical capacitance in anodic TiO2 nanotubes with controlled pore diameter. J. Phys. Chem. C. 2016;120:9569–9580. doi: 10.1021/acs.jpcc.6b01171. DOI
Wu H, et al. Enhanced supercapacitance in anodic TiO2 nanotube films by hydrogen plasma treatment. Nanotechnology. 2013;24:455401. doi: 10.1088/0957-4484/24/45/455401. PubMed DOI
Lu X, et al. Hydrogenated TiO2 nanotube arrays for supercapacitors. Nano Lett. 2012;12:1690–1696. doi: 10.1021/nl300173j. PubMed DOI
Anitha VC, Hamnabard N, Banerjee AN, Dillip GR, Joo SW. Enhanced electrochemical performance of morphology-controlled titania-reduced graphene oxide nanostructures fabricated via a combined anodization-hydrothermal process. RSC Adv. 2016;6:12571–12583. doi: 10.1039/C5RA23722J. DOI
Fabregat-Santiago F, et al. High carrier density and capacitance in TiO2 nanotube arrays induced by electrochemical doping. J. Am. Chem. Soc. 2008;13:11312–11316. doi: 10.1021/ja710899q. PubMed DOI
Simon P, Gogotsi Y. Materials for electrochemical capacitors. Nat. Mater. 2008;7:845–854. doi: 10.1038/nmat2297. PubMed DOI
Wang J, Polleux J, Lim J, Dunn B. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J. Phys. Chem. C. 2007;111:14925–14931. doi: 10.1021/jp074464w. DOI
Xie Y, Zhou L, Huang C, Huang H, Lu J. Fabrication of nickel oxide-embedded titania nanotube array for redox capacitance application. Electrochim. Acta. 2008;53:3643–3649. doi: 10.1016/j.electacta.2007.12.037. DOI
An KH, et al. High-capacitance supercapacitor using a nanocomposite electrode of single-walled carbon nanotube and polypyrrole. J. Electrochem. Soc. 2002;149:A1058–A1062. doi: 10.1149/1.1491235. DOI
Kuila T, Mishra AK, Khanra P, Kim NH, Lee JH. Recent advances in the efficient reduction of graphene oxide and its applications as energy storage electrode material. Nanoscale. 2013;5:52–71. doi: 10.1039/C2NR32703A. PubMed DOI
Sun X, et al. Atomic layer deposition of TiO2 on graphene for supercapacitors. J. Electrochem. Soc. 2012;159:A364–A369. doi: 10.1149/2.025204jes. DOI
Conway BE, Pell WG. Double-layer pseudocapacitance types of electrochemical capacitors and their applications to the development of hybrid devices. J. Solid State Electrochem. 2003;7:637–644. doi: 10.1007/s10008-003-0395-7. DOI
Conway, B. E. Electrochemical Supercapacitors. Scientific Fundamentals and Technological Applications (Kluwer Academic Plenum Publishers, New York, 1999).
Salari M, et al. Enhancement of the electrochemical capacitance of TiO2 nanotube arrays through controlled phase transformation of anatase to rutile. Phys. Chem. Chem. Phys. 2012;14:4770–4779. doi: 10.1039/c2cp40410a. PubMed DOI
Hu C, et al. VO2/TiO2 nanosponges as binder-free electrodes for high-performance supercapacitors. Sci. Rep. 2015;5:16012. doi: 10.1038/srep16012. PubMed DOI PMC
Salari M, Konstantinov K, Liu HK. Enhancement of the capacitance in TiO2 nanotubes through controlled introduction of oxygen vacancies. J. Mater. Chem. 2011;21:5128–5133. doi: 10.1039/c0jm04085a. DOI
Ke Q, et al. 3D TiO2@Ni(OH)2 core-shell arrays with tunable nanostructure for hybrid supercapacitor application. Sci. Rep. 2015;5:13940. doi: 10.1038/srep13940. PubMed DOI PMC
Du X, et al. One-step preparation of nanoarchitectured TiO2 on porous Al as integrated anode for high-performance lithium-ion batteries. Sci. Rep. 2016;6:20138. doi: 10.1038/srep20138. PubMed DOI PMC
Fabregat-Santiago F, et al. Chemical capacitance of nanoporous-nanocrystalline TiO2 in a room temperature ionic liquid. Phys. Chem. Chem. Phys. 2006;8:1827–1833. doi: 10.1039/B600452K. PubMed DOI
Archana J, Navaneethan M, Hayakawa Y. Hydrothermal growth of monodispersed rutile nanorods and functional properties. Mat. Lett. 2013;98:38–41. doi: 10.1016/j.matlet.2013.02.031. DOI
Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K. Titania nanotubes prepared by chemical processing. Adv. Mat. 1999;11:1307–1311. doi: 10.1002/(SICI)1521-4095(199910)11:15<1307::AID-ADMA1307>3.0.CO;2-H. DOI
Chai Y, et al. Low-resistance electrical contact to carbon nanotubes with graphitic interfacial layer. IEEE Trans. Electron Devices. 2012;59:12–19. doi: 10.1109/TED.2011.2170216. DOI
Hong CK, Jung YH, Kim HJ, Park KH. Electrochemical properties of TiO2 nanoparticle/nanorod composite photoanode for dye-sensitized solar cells. Current Appl. Phys. 2014;14:294–299. doi: 10.1016/j.cap.2013.12.003. DOI
Morozova M, et al. Electrochemical properties of TiO2 electrode prepared by various methods. Procedia Engineering. 2012;42:573–580. doi: 10.1016/j.proeng.2012.07.450. DOI
Anitha VC, Banerjee AN, Joo SW, Min BK. Barrier-oxide layer engineering of TiO2 nanotube arrays to get single- and multi-stage Y-branched nanotubes: effect of voltage ramping and electrolyte conductivity. Mater. Sci. Engg. B. 2015;195:1–11. doi: 10.1016/j.mseb.2015.01.005. DOI
Grimes, C. A., Mor, G. K. TiO2 Nanotube Arrays, Synthesis, Properties and Applications (Springer Science+Business Media, NY, US, 2009).
Wu WQ. Dye-sensitized solar cells based on a double layered TiO2 photoanode consisting of hierarchical nanowire arrays and nanoparticles with greatly improved photovoltaic performance. J. Mater. Chem. 2012;22:18057–18062. doi: 10.1039/c2jm33829g. DOI
Newman, J., Thomas-Alyea, K. E. Electrochemical Systems (3rd Ed.) (John Wiley and Sons, NY, 2012).
He X, et al. Supercapacitor of TiO2 nanofibers by electrospinning and KOH treatment. Materials and Design. 2016;106:74–80. doi: 10.1016/j.matdes.2016.05.025. DOI
Zhen M, Guo S, Gao G, Zhou Z, Liu L. TiO2-B nanorods on reduced graphene oxide as anode materials for Li ion batteries. Chem. Commun. 2015;51:507–510. doi: 10.1039/C4CC07446G. PubMed DOI
Divya Rani VV, Manzoor K, Deepthy M, Selvamurughan N, Shantikumar VN. The design of novel nanostructures on titanium by solution chemistry for an improved osteoblast response. Nanotechnology. 2009;20:195101. doi: 10.1088/0957-4484/20/19/195101. PubMed DOI
Fedorov FS, et al. Potassium polytitanate gas-sensor study by impedance spectroscopy. Anal. Chim. Acta. 2015;897:81–86. doi: 10.1016/j.aca.2015.09.029. PubMed DOI
Gardecka AJ, Teixeira D, Goh GKL, Sankar g, Parkin IP. Synthesis of rutile Nb:TiO2 free-standing thin film at the liquid-air interface. Adv. Mater. Interfaces. 2016;3:1600361. doi: 10.1002/admi.201600361. DOI
Li Y, Shen W. Morphology-dependent nanocatalysts: rod-shaped oxides. Chem. Soc. Rev. 2014;43:1543–1574. doi: 10.1039/C3CS60296F. PubMed DOI
Miyauchi M, Tokudome H, Toda Y, Kamiya T, Hosono H. Electron field emission from TiO2 nanotube arrays synthesized by hydrothermal reaction. Appl. Phys. Lett. 2006;89:043114. doi: 10.1063/1.2245202. DOI
Zaremba T, Witkowska D. Methods of manufacturing of potassium titanate fibers and whiskers. A review. Materials Science-Poland. 2010;28:No.1.
Su D, Dou S, Wang G. Single crystalline Co3O4 nanocrystals exposed with different crystal planes for Li-O2 batteries. Sci. Rep. 2014;4:5767. doi: 10.1038/srep05767. PubMed DOI PMC
Nikhila MP, et al. P123 and solvent-assisted synthesis of titania nanocuboids with co-exposed {101} and {001} planes. CrystEngComm. 2017;19:511–518. doi: 10.1039/C6CE02311H. DOI
Lai CW, Sreekantan A. Single Step Formation of C-TiO2 Nanotubes: Influence of Applied Voltage and Their Photocatalytic Activity under Solar Illumination. Int. J. Photoenergy. 2013;2013:276504.
Prakash J, et al. Synthesis, characterization and multifunctional properties of plasmonic Ag–TiO2 nanocomposites. Nanotechnology. 2016;35:355707. doi: 10.1088/0957-4484/27/35/355707. PubMed DOI
XPS Handbook of The Elements and Native Oxides, © XPS International, Inc., CAS# 7440-22-4 (1999).
Donachie, M. J. Titanium: A Technical Guide, 2nd Edition; ASM International (The Materials Information Society, Ohio, US, 2000).
Lin C, Song Y, Cao L, Chen S. Effective photocatalysis of functional nanocomposites based on carbon and TiO2 nanoparticles. Nanoscale. 2013;5:4986–4992. doi: 10.1039/c3nr01033c. PubMed DOI
Descostes M, et al. Use of XPS in the determination of chemical environment and oxidation state of iron and sulfur samples: constitution of a data basis in binding energies for Fe and S reference compounds and applications to the evidence of surface species of an oxidized pyrite in a carbonate medium. Appl. Surf. Sci. 2000;165:288–302. doi: 10.1016/S0169-4332(00)00443-8. DOI
Li S, et al. In situ XPS studies of thermally deposited potassium on poly(p-phenylene vinylene) and its ring-substituted derivatives. Appl. Surf. Sci. 2001;181:201–210. doi: 10.1016/S0169-4332(01)00397-X. DOI
Barai HR, Banerjee AN, Hamnabard N, Joo SW. Synthesis of amorphous manganese oxide nanoparticles – to – crystalline nanorods through a simple wet-chemical technique using K+ ions as a ‘growth director’ and their morphology-controlled high performance supercapacitor applications. RSC Adv. 2016;6:78887–78908. doi: 10.1039/C6RA18811G. DOI
Yang Y, et al. ACS Appl. Mater. Interfaces. 2014. Enhanced Charge Transfer by Gold Nanoparticle at DNA Modified Electrode and Its Application to Label-Free DNA Detection; pp. 7579–7584. PubMed
Wang H, Pilon L. Physical interpretation of cyclic voltammetry for measuring electric double layer capacitances. Electrochim. Acta. 2012;64:130–139. doi: 10.1016/j.electacta.2011.12.118. DOI
Chmiola J, Yushin G, Gogotsi Y, Portet C, Taberna PL. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science. 2006;313:1760–1763. doi: 10.1126/science.1132195. PubMed DOI
The available BET instrument is designed for powdered sample. In the current case, the samples are directly fabricated on Ti substrate with dimensions of 14 mm diameter and 4 mm thickness. All the available XPS instruments are not designed to handle this type samples (TiO2 anchored on Ti substrate). Since the TiO2 nanostructures are extremely well-adhered onto the Ti substrate, lifting-off the nanostructured samples from the Ti surface is not only highly challenging, but the lifted sample could have completely different surface properties than that of anchored samples, due to the application of high forces.
Choi YJ, Luo TZM. Electrochemical Properties of Silver Nanoparticle Doped Aminosilica Nanocomposite. Int. J. Electrochem. 2011;2011:404937. doi: 10.4061/2011/404937. DOI
Cheng Q, Tang J, Shinya N, Qin LC. Polyaniline modified graphene and carbon nanotube composite electrode for asymmetric supercapacitors of high energy density. J. Power Sources. 2013;241:423–428. doi: 10.1016/j.jpowsour.2013.04.105. DOI
Wang W, et al. Hydrous Ruthenium Oxide Nanoparticles Anchored to Graphene and Carbon Nanotube Hybrid Foam for Supercapacitors. Sci. Rep. 2014;4:4452. doi: 10.1038/srep04452. PubMed DOI PMC
Wan C, Yuan L, Shen H. Effects of electrode mass-loading on the electrochemical properties of porous MnO2 for electrochemical supercapacitor. Int. J. Electrochem. Sci. 2014;9:4024–4038.
Zhao W, Ai Z, Dai J, Zhang M. Enhanced Photocatalytic Activity for H2 Evolution under Irradiation of UV–Vis Light by Au-Modified Nitrogen-Doped TiO2. PLoS ONE. 2014;9:e103671. doi: 10.1371/journal.pone.0103671. PubMed DOI PMC
Wang H, Ma D, Huang X, Huang Y, Zhang X. General and Controllable Synthesis Strategy of Metal Oxide/TiO2 Hierarchical Heterostructures with Improved Lithium-Ion Battery Performance. Sci. Rep. 2012;2:701. doi: 10.1038/srep00701. PubMed DOI PMC
Xiao P, et al. Electrochemical and photoelectrical properties of titania nanotube arrays annealed in different gases. Sensors and Actuators B. 2008;134:367–372. doi: 10.1016/j.snb.2008.05.005. DOI
Xie Y, Zhou L, Lu J. Photoelectrochemical behavior of titania nanotube array grown on nanocrystalline titanium. J. Mater. Sci. 2009;44:2907–2915. doi: 10.1007/s10853-009-3384-0. DOI
Li T, et al. TiO2 crystalline structure and electrochemical performance in two-ply yarn CNT/TiO2 asymmetric supercapacitors. J. Mater. Sci. 2017;52:7733–7743. doi: 10.1007/s10853-017-1033-6. DOI
Mai L, et al. Fast ionic diffusion-enabled nanoflakes electrode by spontaneous electrochemical pre-intercalation for high-performance supercapacitor. Sci. Rep. 2013;3:1718. doi: 10.1038/srep01718. DOI