Improved electrochemical properties of morphology-controlled titania/titanate nanostructures prepared by in-situ hydrothermal surface modification of self-source Ti substrate for high-performance supercapacitors

. 2017 Oct 16 ; 7 (1) : 13227. [epub] 20171016

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid29038427
Odkazy

PubMed 29038427
PubMed Central PMC5643498
DOI 10.1038/s41598-017-11346-2
PII: 10.1038/s41598-017-11346-2
Knihovny.cz E-zdroje

Ti substrate surface is modified into two-dimensional (2D) TiO2 nanoplatelet or one-dimensional (1D) nanorod/nanofiber (or a mixture of both) structure in a controlled manner via a simple KOH-based hydrothermal technique. Depending on the KOH concentration, different types of TiO2 nanostructures (2D platelets, 1D nanorods/nanofibers and a 2D+1D mixed sample) are fabricated directly onto the Ti substrate surface. The novelty of this technique is the in-situ modification of the self-source Ti surface into titania nanostructures, and its direct use as the electrochemical microelectrode without any modifications. This leads to considerable improvement in the interfacial properties between metallic Ti and semiconducting TiO2. Since interfacial states/defects have profound effect on charge transport properties of electronic/electrochemical devices, therefore this near-defect-free interfacial property of Ti-TiO2 microelectrode has shown high supercapacitive performances for superior charge-storage devices. Additionally, by hydrothermally tuning the morphology of titania nanostructures, the electrochemical properties of the electrodes are also tuned. A Ti-TiO2 electrode comprising of a mixture of 2D-platelet+1D-nanorod structure reveals very high specific capacitance values (~7.4 mF.cm-2) due to the unique mixed morphology which manifests higher active sites (hence, higher utilization of the active materials) in terms of greater roughness at the 2D-platelet structures and higher surface-to-volume-ratio in the 1D-nanorod structures.

Zobrazit více v PubMed

Banerjee AN. The design, fabrication, and photocatalytic utility of nanostructured semiconductors: focus on TiO2-based nanostructures. Nanotechnol. Sci. Appl. 2011;4:35–65. doi: 10.2147/NSA.S9040. PubMed DOI PMC

Anitha VC, Banerjee AN, Joo SW. Recent developments in TiO2 as n- and p-type transparent semiconductors: synthesis, modification, properties, and energy-related applications. J. Mater. Sci. 2015;50:7495–7536. doi: 10.1007/s10853-015-9303-7. DOI

Roy P, Berger S, Schmuki P. TiO2 nanotubes: synthesis and applications. Angew Chem. Int. Ed. 2011;50:2904–2939. doi: 10.1002/anie.201001374. PubMed DOI

Linsebigler AL, Lu G, Yates JT., Jr. Photocatalysis on TiO2 surfaces: principles, mechanism, and selected results. Chem. Rev. 1995;95:735–758. doi: 10.1021/cr00035a013. DOI

Anitha VC, Banerjee AN, Joo SW, Min BK. Morphology-dependent low macroscopic field emission properties of titania/titanate nanorods synthesized by alkali-controlled hydrothermal treatment of metallic Ti surface. Nanotechnology. 2015;26:355705. doi: 10.1088/0957-4484/26/35/355705. PubMed DOI

Anitha VC, et al. Biofilm formation on a TiO2 nanotube with controlled pore diameter and surface wettability. Nanotechnology. 2015;26:065102. doi: 10.1088/0957-4484/26/6/065102. PubMed DOI

Banerjee AN, Joo SW, Min BK. Photocatalytic degradation of organic dye by sol-gel-derived gallium-doped anatase titanium oxide nanoparticles for environment remediation. J. Nanomater. 2012;2012:201492. doi: 10.1155/2012/201492. DOI

Anitha VC, Banerjee AN, Dillip GR, Joo SW, Min BK. Nonstoichiometry-induced enhancement of electrochemical capacitance in anodic TiO2 nanotubes with controlled pore diameter. J. Phys. Chem. C. 2016;120:9569–9580. doi: 10.1021/acs.jpcc.6b01171. DOI

Wu H, et al. Enhanced supercapacitance in anodic TiO2 nanotube films by hydrogen plasma treatment. Nanotechnology. 2013;24:455401. doi: 10.1088/0957-4484/24/45/455401. PubMed DOI

Lu X, et al. Hydrogenated TiO2 nanotube arrays for supercapacitors. Nano Lett. 2012;12:1690–1696. doi: 10.1021/nl300173j. PubMed DOI

Anitha VC, Hamnabard N, Banerjee AN, Dillip GR, Joo SW. Enhanced electrochemical performance of morphology-controlled titania-reduced graphene oxide nanostructures fabricated via a combined anodization-hydrothermal process. RSC Adv. 2016;6:12571–12583. doi: 10.1039/C5RA23722J. DOI

Fabregat-Santiago F, et al. High carrier density and capacitance in TiO2 nanotube arrays induced by electrochemical doping. J. Am. Chem. Soc. 2008;13:11312–11316. doi: 10.1021/ja710899q. PubMed DOI

Simon P, Gogotsi Y. Materials for electrochemical capacitors. Nat. Mater. 2008;7:845–854. doi: 10.1038/nmat2297. PubMed DOI

Wang J, Polleux J, Lim J, Dunn B. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J. Phys. Chem. C. 2007;111:14925–14931. doi: 10.1021/jp074464w. DOI

Xie Y, Zhou L, Huang C, Huang H, Lu J. Fabrication of nickel oxide-embedded titania nanotube array for redox capacitance application. Electrochim. Acta. 2008;53:3643–3649. doi: 10.1016/j.electacta.2007.12.037. DOI

An KH, et al. High-capacitance supercapacitor using a nanocomposite electrode of single-walled carbon nanotube and polypyrrole. J. Electrochem. Soc. 2002;149:A1058–A1062. doi: 10.1149/1.1491235. DOI

Kuila T, Mishra AK, Khanra P, Kim NH, Lee JH. Recent advances in the efficient reduction of graphene oxide and its applications as energy storage electrode material. Nanoscale. 2013;5:52–71. doi: 10.1039/C2NR32703A. PubMed DOI

Sun X, et al. Atomic layer deposition of TiO2 on graphene for supercapacitors. J. Electrochem. Soc. 2012;159:A364–A369. doi: 10.1149/2.025204jes. DOI

Conway BE, Pell WG. Double-layer pseudocapacitance types of electrochemical capacitors and their applications to the development of hybrid devices. J. Solid State Electrochem. 2003;7:637–644. doi: 10.1007/s10008-003-0395-7. DOI

Conway, B. E. Electrochemical Supercapacitors. Scientific Fundamentals and Technological Applications (Kluwer Academic Plenum Publishers, New York, 1999).

Salari M, et al. Enhancement of the electrochemical capacitance of TiO2 nanotube arrays through controlled phase transformation of anatase to rutile. Phys. Chem. Chem. Phys. 2012;14:4770–4779. doi: 10.1039/c2cp40410a. PubMed DOI

Hu C, et al. VO2/TiO2 nanosponges as binder-free electrodes for high-performance supercapacitors. Sci. Rep. 2015;5:16012. doi: 10.1038/srep16012. PubMed DOI PMC

Salari M, Konstantinov K, Liu HK. Enhancement of the capacitance in TiO2 nanotubes through controlled introduction of oxygen vacancies. J. Mater. Chem. 2011;21:5128–5133. doi: 10.1039/c0jm04085a. DOI

Ke Q, et al. 3D TiO2@Ni(OH)2 core-shell arrays with tunable nanostructure for hybrid supercapacitor application. Sci. Rep. 2015;5:13940. doi: 10.1038/srep13940. PubMed DOI PMC

Du X, et al. One-step preparation of nanoarchitectured TiO2 on porous Al as integrated anode for high-performance lithium-ion batteries. Sci. Rep. 2016;6:20138. doi: 10.1038/srep20138. PubMed DOI PMC

Fabregat-Santiago F, et al. Chemical capacitance of nanoporous-nanocrystalline TiO2 in a room temperature ionic liquid. Phys. Chem. Chem. Phys. 2006;8:1827–1833. doi: 10.1039/B600452K. PubMed DOI

Archana J, Navaneethan M, Hayakawa Y. Hydrothermal growth of monodispersed rutile nanorods and functional properties. Mat. Lett. 2013;98:38–41. doi: 10.1016/j.matlet.2013.02.031. DOI

Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K. Titania nanotubes prepared by chemical processing. Adv. Mat. 1999;11:1307–1311. doi: 10.1002/(SICI)1521-4095(199910)11:15<1307::AID-ADMA1307>3.0.CO;2-H. DOI

Chai Y, et al. Low-resistance electrical contact to carbon nanotubes with graphitic interfacial layer. IEEE Trans. Electron Devices. 2012;59:12–19. doi: 10.1109/TED.2011.2170216. DOI

Hong CK, Jung YH, Kim HJ, Park KH. Electrochemical properties of TiO2 nanoparticle/nanorod composite photoanode for dye-sensitized solar cells. Current Appl. Phys. 2014;14:294–299. doi: 10.1016/j.cap.2013.12.003. DOI

Morozova M, et al. Electrochemical properties of TiO2 electrode prepared by various methods. Procedia Engineering. 2012;42:573–580. doi: 10.1016/j.proeng.2012.07.450. DOI

Anitha VC, Banerjee AN, Joo SW, Min BK. Barrier-oxide layer engineering of TiO2 nanotube arrays to get single- and multi-stage Y-branched nanotubes: effect of voltage ramping and electrolyte conductivity. Mater. Sci. Engg. B. 2015;195:1–11. doi: 10.1016/j.mseb.2015.01.005. DOI

Grimes, C. A., Mor, G. K. TiO2 Nanotube Arrays, Synthesis, Properties and Applications (Springer Science+Business Media, NY, US, 2009).

Wu WQ. Dye-sensitized solar cells based on a double layered TiO2 photoanode consisting of hierarchical nanowire arrays and nanoparticles with greatly improved photovoltaic performance. J. Mater. Chem. 2012;22:18057–18062. doi: 10.1039/c2jm33829g. DOI

Newman, J., Thomas-Alyea, K. E. Electrochemical Systems (3rd Ed.) (John Wiley and Sons, NY, 2012).

He X, et al. Supercapacitor of TiO2 nanofibers by electrospinning and KOH treatment. Materials and Design. 2016;106:74–80. doi: 10.1016/j.matdes.2016.05.025. DOI

Zhen M, Guo S, Gao G, Zhou Z, Liu L. TiO2-B nanorods on reduced graphene oxide as anode materials for Li ion batteries. Chem. Commun. 2015;51:507–510. doi: 10.1039/C4CC07446G. PubMed DOI

Divya Rani VV, Manzoor K, Deepthy M, Selvamurughan N, Shantikumar VN. The design of novel nanostructures on titanium by solution chemistry for an improved osteoblast response. Nanotechnology. 2009;20:195101. doi: 10.1088/0957-4484/20/19/195101. PubMed DOI

Fedorov FS, et al. Potassium polytitanate gas-sensor study by impedance spectroscopy. Anal. Chim. Acta. 2015;897:81–86. doi: 10.1016/j.aca.2015.09.029. PubMed DOI

Gardecka AJ, Teixeira D, Goh GKL, Sankar g, Parkin IP. Synthesis of rutile Nb:TiO2 free-standing thin film at the liquid-air interface. Adv. Mater. Interfaces. 2016;3:1600361. doi: 10.1002/admi.201600361. DOI

Li Y, Shen W. Morphology-dependent nanocatalysts: rod-shaped oxides. Chem. Soc. Rev. 2014;43:1543–1574. doi: 10.1039/C3CS60296F. PubMed DOI

Miyauchi M, Tokudome H, Toda Y, Kamiya T, Hosono H. Electron field emission from TiO2 nanotube arrays synthesized by hydrothermal reaction. Appl. Phys. Lett. 2006;89:043114. doi: 10.1063/1.2245202. DOI

Zaremba T, Witkowska D. Methods of manufacturing of potassium titanate fibers and whiskers. A review. Materials Science-Poland. 2010;28:No.1.

Su D, Dou S, Wang G. Single crystalline Co3O4 nanocrystals exposed with different crystal planes for Li-O2 batteries. Sci. Rep. 2014;4:5767. doi: 10.1038/srep05767. PubMed DOI PMC

Nikhila MP, et al. P123 and solvent-assisted synthesis of titania nanocuboids with co-exposed {101} and {001} planes. CrystEngComm. 2017;19:511–518. doi: 10.1039/C6CE02311H. DOI

Lai CW, Sreekantan A. Single Step Formation of C-TiO2 Nanotubes: Influence of Applied Voltage and Their Photocatalytic Activity under Solar Illumination. Int. J. Photoenergy. 2013;2013:276504.

Prakash J, et al. Synthesis, characterization and multifunctional properties of plasmonic Ag–TiO2 nanocomposites. Nanotechnology. 2016;35:355707. doi: 10.1088/0957-4484/27/35/355707. PubMed DOI

XPS Handbook of The Elements and Native Oxides, © XPS International, Inc., CAS# 7440-22-4 (1999).

Donachie, M. J. Titanium: A Technical Guide, 2nd Edition; ASM International (The Materials Information Society, Ohio, US, 2000).

Lin C, Song Y, Cao L, Chen S. Effective photocatalysis of functional nanocomposites based on carbon and TiO2 nanoparticles. Nanoscale. 2013;5:4986–4992. doi: 10.1039/c3nr01033c. PubMed DOI

Descostes M, et al. Use of XPS in the determination of chemical environment and oxidation state of iron and sulfur samples: constitution of a data basis in binding energies for Fe and S reference compounds and applications to the evidence of surface species of an oxidized pyrite in a carbonate medium. Appl. Surf. Sci. 2000;165:288–302. doi: 10.1016/S0169-4332(00)00443-8. DOI

Li S, et al. In situ XPS studies of thermally deposited potassium on poly(p-phenylene vinylene) and its ring-substituted derivatives. Appl. Surf. Sci. 2001;181:201–210. doi: 10.1016/S0169-4332(01)00397-X. DOI

Barai HR, Banerjee AN, Hamnabard N, Joo SW. Synthesis of amorphous manganese oxide nanoparticles – to – crystalline nanorods through a simple wet-chemical technique using K+ ions as a ‘growth director’ and their morphology-controlled high performance supercapacitor applications. RSC Adv. 2016;6:78887–78908. doi: 10.1039/C6RA18811G. DOI

Yang Y, et al. ACS Appl. Mater. Interfaces. 2014. Enhanced Charge Transfer by Gold Nanoparticle at DNA Modified Electrode and Its Application to Label-Free DNA Detection; pp. 7579–7584. PubMed

Wang H, Pilon L. Physical interpretation of cyclic voltammetry for measuring electric double layer capacitances. Electrochim. Acta. 2012;64:130–139. doi: 10.1016/j.electacta.2011.12.118. DOI

Chmiola J, Yushin G, Gogotsi Y, Portet C, Taberna PL. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science. 2006;313:1760–1763. doi: 10.1126/science.1132195. PubMed DOI

The available BET instrument is designed for powdered sample. In the current case, the samples are directly fabricated on Ti substrate with dimensions of 14 mm diameter and 4 mm thickness. All the available XPS instruments are not designed to handle this type samples (TiO2 anchored on Ti substrate). Since the TiO2 nanostructures are extremely well-adhered onto the Ti substrate, lifting-off the nanostructured samples from the Ti surface is not only highly challenging, but the lifted sample could have completely different surface properties than that of anchored samples, due to the application of high forces.

Choi YJ, Luo TZM. Electrochemical Properties of Silver Nanoparticle Doped Aminosilica Nanocomposite. Int. J. Electrochem. 2011;2011:404937. doi: 10.4061/2011/404937. DOI

Cheng Q, Tang J, Shinya N, Qin LC. Polyaniline modified graphene and carbon nanotube composite electrode for asymmetric supercapacitors of high energy density. J. Power Sources. 2013;241:423–428. doi: 10.1016/j.jpowsour.2013.04.105. DOI

Wang W, et al. Hydrous Ruthenium Oxide Nanoparticles Anchored to Graphene and Carbon Nanotube Hybrid Foam for Supercapacitors. Sci. Rep. 2014;4:4452. doi: 10.1038/srep04452. PubMed DOI PMC

Wan C, Yuan L, Shen H. Effects of electrode mass-loading on the electrochemical properties of porous MnO2 for electrochemical supercapacitor. Int. J. Electrochem. Sci. 2014;9:4024–4038.

Zhao W, Ai Z, Dai J, Zhang M. Enhanced Photocatalytic Activity for H2 Evolution under Irradiation of UV–Vis Light by Au-Modified Nitrogen-Doped TiO2. PLoS ONE. 2014;9:e103671. doi: 10.1371/journal.pone.0103671. PubMed DOI PMC

Wang H, Ma D, Huang X, Huang Y, Zhang X. General and Controllable Synthesis Strategy of Metal Oxide/TiO2 Hierarchical Heterostructures with Improved Lithium-Ion Battery Performance. Sci. Rep. 2012;2:701. doi: 10.1038/srep00701. PubMed DOI PMC

Xiao P, et al. Electrochemical and photoelectrical properties of titania nanotube arrays annealed in different gases. Sensors and Actuators B. 2008;134:367–372. doi: 10.1016/j.snb.2008.05.005. DOI

Xie Y, Zhou L, Lu J. Photoelectrochemical behavior of titania nanotube array grown on nanocrystalline titanium. J. Mater. Sci. 2009;44:2907–2915. doi: 10.1007/s10853-009-3384-0. DOI

Li T, et al. TiO2 crystalline structure and electrochemical performance in two-ply yarn CNT/TiO2 asymmetric supercapacitors. J. Mater. Sci. 2017;52:7733–7743. doi: 10.1007/s10853-017-1033-6. DOI

Mai L, et al. Fast ionic diffusion-enabled nanoflakes electrode by spontaneous electrochemical pre-intercalation for high-performance supercapacitor. Sci. Rep. 2013;3:1718. doi: 10.1038/srep01718. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...